• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grid

Extracts from this document...

Introduction

N ATWELL-MANSINGH

GCSE MATHS

COURSE WORK

Number Grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

70

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

90

100

                                        Fig. A

To solve this problem I have broken down the table as much as possible starting with the first query given in the problem.

Ex (1) first box

Highlighted box: the product of the top right hand number and the bottom left hand

number minus the product of the top left hand number and the bottom right hand number

2*13= 26

12*3= 36

36-26= 10

Ex (2) second box

45*56=2520

55*46= 2530

2530-2520= 10

The product of the top right hand number and the bottom left hand number in each      square of numbers minus the product of the top left hand number

...read more.

Middle

I tried using the formula for what I have found before in table Fig. B below but this time I added more columns to the problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

70

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

90

100

                                        Fig. B    

The first column grid only 7 columns were highlighted and the following was taken into consideration

6 first number is n

7 the second number is n +1

By trying to find the formula for the number of columns used I introduced c in the formula

Therefore when 7 columns were used

The number below n =n+c

The number next to is as  n +c=1

...read more.

Conclusion

Investigation 1:

The product of any square regardless of it’s location in the grid is 10.

Investigation 2:

n+c+1 (c being the number of columns) the answer is always equal to the number of columns used in the grid.

Investigation 3:

The total of numbers in the top row of a grid subtract the total of numbers below is always equal to the number of columns used in the grid multiply by ten (10) which is the product of any square.

In conclusion I found that the general formula for a grid with c columns multiply by the general formula in a square is equal to the sum of numbers in the grid square and grid column.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Algebra Investigation - Grid Square and Cube Relationships

    Part B: Changing Increment Size (s) Increment Size: 2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Experimental number box: Algebraic box: n n+2(w-1)

  2. Number Grid Investigation.

    21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  1. Open Box Problem.

    4752 13 4 64 3328 14 2 62 1736 15 0 60 0 The table above shows that the cut of x, which will give this open box its maximum volume, is 7. However, the divisor this time is not 4.

  2. Maths Grid Investigation

    31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 5 x 5 grids: 1 2 3 4 5 9 10 11 12 13 17 18

  1. Maths - number grid

    r x s Results Multiple of 10 3 x 2 20 10x2 10x2x1 2x3 20 10x2 10x1x2 5x3 80 10x8 10x4x2 6x4 150 10x15 10x5x3 7x4 180 10x18 10x6x3 8x5 280 10x28 10x7x4 By completing the second part of my investigation and drawing up the table above, showing my results

  2. Mathematics - Number Stairs

    = 6n + 48 T = 6n + 52 4 5 2-Step Staircase/ Grid Width 9 10 1 2 n 1 2 3 4 5 T 13 16 19 22 25 Suspected formula: T = 3n + 10 Prediction / Test: 3 x 20 + 10 = 70 29 20

  1. number grid

    Although it is quite certain that this trend would be observed in all number boxes of this instance, it is necessary to find an algebraic formula to prove that the difference remains invariable. Any 5x5 square box on the 10x10 grid can be expressed in this way: n n+1 n+2

  2. number grid investigation]

    I will now investigate to check if all examples of 2x2 grid boxes demonstrate this trend in difference. I will conduct this research using another 2 of these boxes from the overall cardinal10x10 number grid. My predication also seems to be true in the cases of the previous 2 number boxes.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work