• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grid

Extracts from this document...

Introduction

N ATWELL-MANSINGH

GCSE MATHS

COURSE WORK

Number Grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

70

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

90

100

                                        Fig. A

To solve this problem I have broken down the table as much as possible starting with the first query given in the problem.

Ex (1) first box

Highlighted box: the product of the top right hand number and the bottom left hand

number minus the product of the top left hand number and the bottom right hand number

2*13= 26

12*3= 36

36-26= 10

Ex (2) second box

45*56=2520

55*46= 2530

2530-2520= 10

The product of the top right hand number and the bottom left hand number in each      square of numbers minus the product of the top left hand number

...read more.

Middle

I tried using the formula for what I have found before in table Fig. B below but this time I added more columns to the problem

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

70

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

90

100

                                        Fig. B    

The first column grid only 7 columns were highlighted and the following was taken into consideration

6 first number is n

7 the second number is n +1

By trying to find the formula for the number of columns used I introduced c in the formula

Therefore when 7 columns were used

The number below n =n+c

The number next to is as  n +c=1

...read more.

Conclusion

Investigation 1:

The product of any square regardless of it’s location in the grid is 10.

Investigation 2:

n+c+1 (c being the number of columns) the answer is always equal to the number of columns used in the grid.

Investigation 3:

The total of numbers in the top row of a grid subtract the total of numbers below is always equal to the number of columns used in the grid multiply by ten (10) which is the product of any square.

In conclusion I found that the general formula for a grid with c columns multiply by the general formula in a square is equal to the sum of numbers in the grid square and grid column.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Algebra Investigation - Grid Square and Cube Relationships

    chosen to begin with (n), a difference of 7hw-7h-7w+7 will always be present. Testing: Using the experimental number box above, it is possible to prove that the formula works, and is correct. The box had a height and width of 2x2, and was based on the 7x7 grid in question.

  2. Number Grid Investigation.

    71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

  1. Maths - number grid

    of 10 and successfully identifying a sequence, this allowed me to draw up a table and establish a formula 10(r - 1). I decided to continue on and make a Chapter Two, where I investigated rectangles in a 10x10 number grid and repeated my process from my initial piece of work.

  2. Number Stairs

    This will lead to the fact that the nth term has to have 10n in the formula, the extra is calculated by working out what is left over this will be +90.Therefore, the formula has to be T =10n + 90.

  1. number grid

    Now I am going to try and find out the formula that finds the difference between, the product of the top left number and the bottom right number, and the product of the top right number and the bottom left number for any size square.

  2. Mathematics - Number Stairs

    3n + 13 3 T = 6n + 36 T = 6n + 40 T = 6n + 44 T = 6n + 48 T = 6n + 52 4 T = 10n + 90 T = 10n + 100 T = 10n + 110 5 From here, I see

  1. Mathematical Coursework: 3-step stairs

    Therefore I will take the pattern number of the total: > 58-6=52 > b= 52 To conclusion my new formula would be: > 6n+52 8cm by 8cm 9cm by

  2. number grid investigation]

    Although it is quite certain that this trend would be observed in all number boxes of this instance, it is necessary to find an algebraic formula to prove that the difference remains invariable. Any 2x2 square box on the 10x10 grid can be expressed in this way: n n+1 n+10

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work