• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grids - Algebra

Extracts from this document...

Introduction

Number Grid Coursework

I am doing this experiment to see if there are any patterns in squares on a 1 - 100 grid. I will then see if I can make a formula to express these patterns.

2 x 2 Squares

My 2 x 2 square is 14, 15, 24 and 25. The top left times by the bottom right is 14 x 25, this equals 350. The top right multiplied by the bottom left is 15 x 24 = 360. To finish I will take the smaller of the two numbers from the larger. This is 360 – 350 = 10.

My 2 x 2 square is 84, 85, 94 and 95. The top left times by the bottom right is 84 x 95, this equals 7980. The top right multiplied by the bottom left is 85 x 94 = 7990. To finish I will take the smaller of the two numbers from the larger. This is 7990 – 7980 = 10.

My 2 x 2 square is 27, 28, 37 and 38. The top left times by the bottom right is 27x 38, this equals 1026. The top right multiplied by the bottom left is 28 x 37 = 1036. To finish I will take the smaller of the two numbers from the larger. This is 1036 – 1026 = 10.

...read more.

Middle

X + 2

X + 10

X + 11

X + 12

X + 20

X + 21

X + 22

(X2 + 2X + 20X + 40) – (X2 +22X) = 40

FORMULA = (X2 + 22X + 40) - (X2 +22X) = 40

4 x 4 Squares

My 4 x 4 square is 17, 18, 19, 20, 27, 28, 29, 30, 37, 38, 39, 40, 47, 48, 49 and 50. The top left times by the bottom right is 17 x 50 = 850. The top right multiplied by the bottom left is 20 x 47 = 940. The difference between the smaller and bigger numbers is 940 – 850 = 90.

My 4 x 4 square is 1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33 and 34. The top left times by the bottom right is 1 x 34 = 34. The top right multiplied by the bottom left is 4 x 31 = 124. The difference between the smaller and bigger numbers is 124 – 34 = 90.

My 4 x 4 square is 62, 63, 64, 65, 72, 73, 74, 75, 82, 83, 84, 85, 92, 93, 94 and 95. The top left times by the bottom right is 62 x 95 = 5890. The top right multiplied by the bottom left is 65 x 92 = 5980. The difference between the smaller and bigger numbers is 5980 – 5890 = 90.

My 4 x 4 square is67, 68, 69, 70, 77, 78, 79, 80,87, 88, 89, 90, 97, 98, 99 and 100. The top left times by the bottom right is 67 x 100 = 6700. The top right multiplied by the bottom left is 70 x 97 = 6790. The difference between the smaller and bigger numbers is 6790 – 6700 =90.

I have found that for any 4 x 4 square on a 1-100 grid the difference between the two numbers is 90.

Algebra – 4 x 4

X

X + 1

X + 2

X + 3

X + 10

X + 11

X + 12

X + 13

X + 20

X + 21

X + 22

X + 23

X + 30

X + 31

X +32

X + 33

...read more.

Conclusion

My 5 x 5 square is 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 81, 82, 83, 84, 85, 91, 92, 93, 94 and 95. The top left times by the bottom right is 51 x 95 = 4845. The top right multiplied by the bottom left is 55 x 91 = 5005. The difference between the smaller and bigger numbers is 5005 – 4845 = 160.

My 5 x 5 square is 56, 57, 58, 59, 60, 66, 67, 68, 69, 70, 76, 77, 78, 79, 80, 86, 87, 88, 89, 90, 96, 97, 98, 99 and 100. The top left times by the bottom right is 56 x 100 = 5600. The top right multiplied by the bottom left is96 x 60 = 5760. The difference between the smaller and bigger numbers is 5760 – 5600 = 160.

I have found that they all end out that the difference between the two numbers of any 5 x 5 squares on a 1 – 100 grid is 160.

Algebra - 5 x 5

X

X + 1

X + 2

X + 3

X + 4

X + 10

X + 11

X + 12

X + 13

X + 14

X + 20

X + 21

X + 22

X + 23

X + 24

X + 30

X + 31

X +32

X + 33

X + 34

X + 40

X + 41

X + 42

X + 43

X + 44

(X2 + 40X + 4X + 160) – (X2 + 44X) = 160

FORMULA = (X2 + 44X + 160) – (X2 + 44X) = 160

Algebra for All

The algebra for all the equations is 10(n-1)2. This formula can be used to find out any size square on a 10 x 10 grid.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    7 11 12 13 14 15 19 20 21 22 23 27 28 29 30 31 (top right x bottom left) - (top left x bottom right) = 7 x 27 - 3 x 31 = 189 - 93 = 96 So my prediction that I could develop my formula to become D = w (m - 1)

  2. Investigation of diagonal difference.

    I will now produce the solution cutout. n n + (X - 1) n + (Y - 1)G n + (Y - 1)G + (X - 1) To check that the algebraic solutions in each corner of the above cutout work, I will substitute all algebra with the values from

  1. Maths Grids Totals

    - 9877 = 99 37 38 39 40 48 49 50 51 59 60 61 62 70 71 72 73 40 x 70 = 2800 37 x 73 = 2701 2800 - 2701 = 99 5 x 5 squares: 4 5 6 7 8 15 16 17 18 19 26

  2. Mathematical Coursework: 3-step stairs

    Nevertheless using the annotated notes on the formula my formula would look like this now: > 6N =6n x 1= 6 > 6+b=46 Now I would need to find the value of b in order to use my formula in future calculations.

  1. Number Grids

    an LxL square n n+(L-1) n+10(L-1) n+11(L-1) The corners are then multiplied as with the numerical examples which leaves us with two algebraic equations that need subtracting to find the difference. These are. n x [n+11(L-1)]= n2 +11n(L-1) And [n+(L-1)]x[n+10(L-1)]= n2 +10n(L-1)+1n(L-1)+10(L-1) 2 n2 +10n(L-1)+1n(L-1)+10(L-1) 2 - [n2 +11n(L-1)]= 10(L-1)

  2. Number grids

    47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

  1. For my investigation I will be finding out patterns and differences in a number ...

    I have set them out in a table and gradually as I go along I will fill in all the blanks boxes and even add a 6x6 column and a 7x7 column. Prediction My prediction for my 6x6 and 7x7 is that they will both be a multiple of 10.

  2. Investigate different shapes in different sized number grids.

    Rhombus 2x2 3x3 4x4 I will then work out the rhombus formula and work out what 5x5 is then do 5x5 to show that the formula is correct. Squares - 5x5 Grid 2x2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work