• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grids - Algebra

Extracts from this document...

Introduction

Number Grid Coursework

I am doing this experiment to see if there are any patterns in squares on a 1 - 100 grid. I will then see if I can make a formula to express these patterns.

2 x 2 Squares

My 2 x 2 square is 14, 15, 24 and 25. The top left times by the bottom right is 14 x 25, this equals 350. The top right multiplied by the bottom left is 15 x 24 = 360. To finish I will take the smaller of the two numbers from the larger. This is 360 – 350 = 10.

My 2 x 2 square is 84, 85, 94 and 95. The top left times by the bottom right is 84 x 95, this equals 7980. The top right multiplied by the bottom left is 85 x 94 = 7990. To finish I will take the smaller of the two numbers from the larger. This is 7990 – 7980 = 10.

My 2 x 2 square is 27, 28, 37 and 38. The top left times by the bottom right is 27x 38, this equals 1026. The top right multiplied by the bottom left is 28 x 37 = 1036. To finish I will take the smaller of the two numbers from the larger. This is 1036 – 1026 = 10.

...read more.

Middle

X + 2

X + 10

X + 11

X + 12

X + 20

X + 21

X + 22

(X2 + 2X + 20X + 40) – (X2 +22X) = 40

FORMULA = (X2 + 22X + 40) - (X2 +22X) = 40

4 x 4 Squares

My 4 x 4 square is 17, 18, 19, 20, 27, 28, 29, 30, 37, 38, 39, 40, 47, 48, 49 and 50. The top left times by the bottom right is 17 x 50 = 850. The top right multiplied by the bottom left is 20 x 47 = 940. The difference between the smaller and bigger numbers is 940 – 850 = 90.

My 4 x 4 square is 1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33 and 34. The top left times by the bottom right is 1 x 34 = 34. The top right multiplied by the bottom left is 4 x 31 = 124. The difference between the smaller and bigger numbers is 124 – 34 = 90.

My 4 x 4 square is 62, 63, 64, 65, 72, 73, 74, 75, 82, 83, 84, 85, 92, 93, 94 and 95. The top left times by the bottom right is 62 x 95 = 5890. The top right multiplied by the bottom left is 65 x 92 = 5980. The difference between the smaller and bigger numbers is 5980 – 5890 = 90.

My 4 x 4 square is67, 68, 69, 70, 77, 78, 79, 80,87, 88, 89, 90, 97, 98, 99 and 100. The top left times by the bottom right is 67 x 100 = 6700. The top right multiplied by the bottom left is 70 x 97 = 6790. The difference between the smaller and bigger numbers is 6790 – 6700 =90.

I have found that for any 4 x 4 square on a 1-100 grid the difference between the two numbers is 90.

Algebra – 4 x 4

X

X + 1

X + 2

X + 3

X + 10

X + 11

X + 12

X + 13

X + 20

X + 21

X + 22

X + 23

X + 30

X + 31

X +32

X + 33

...read more.

Conclusion

My 5 x 5 square is 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 81, 82, 83, 84, 85, 91, 92, 93, 94 and 95. The top left times by the bottom right is 51 x 95 = 4845. The top right multiplied by the bottom left is 55 x 91 = 5005. The difference between the smaller and bigger numbers is 5005 – 4845 = 160.

My 5 x 5 square is 56, 57, 58, 59, 60, 66, 67, 68, 69, 70, 76, 77, 78, 79, 80, 86, 87, 88, 89, 90, 96, 97, 98, 99 and 100. The top left times by the bottom right is 56 x 100 = 5600. The top right multiplied by the bottom left is96 x 60 = 5760. The difference between the smaller and bigger numbers is 5760 – 5600 = 160.

I have found that they all end out that the difference between the two numbers of any 5 x 5 squares on a 1 – 100 grid is 160.

Algebra - 5 x 5

X

X + 1

X + 2

X + 3

X + 4

X + 10

X + 11

X + 12

X + 13

X + 14

X + 20

X + 21

X + 22

X + 23

X + 24

X + 30

X + 31

X +32

X + 33

X + 34

X + 40

X + 41

X + 42

X + 43

X + 44

(X2 + 40X + 4X + 160) – (X2 + 44X) = 160

FORMULA = (X2 + 44X + 160) – (X2 + 44X) = 160

Algebra for All

The algebra for all the equations is 10(n-1)2. This formula can be used to find out any size square on a 10 x 10 grid.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    (n - 1) was correct in this example. Proving the Formula The formula now needs proving using algebra, which I will do in a similar way to how I proved my formula for squares: Let the top left square in an n x m rectangle within a w sized grid equal a, and therefore: w n a a+(n-1)

  2. Investigation of diagonal difference.

    knowledge know that a square is a special type of rectangle, I feel confident that the product of the diagonal difference of a cutout of total algebra will be my final algebraic formulae for any size cutout on any size grid.

  1. Algebra Investigation - Grid Square and Cube Relationships

    114 115 116 117 118 119 120 121 122 123 124 125 Difference in Cube: Stage A: TF Top Left x BF Bottom Right Stage B: TF Bottom Left x BF Top Right Stage B - Stage A: Difference Difference in Cube: Stage A: = 1 x 125 = 125

  2. Number Stairs

    depending on the relevant stair number for the 9x9 grid, with stair case number4. Which are from 1 to 5. 110 120 130 140 150 +10 +10 +10 +10 It is clear that the difference between the numbers is 10.

  1. Maths Grids Totals

    27 28 29 30 37 38 39 40 41 48 49 50 51 52 8 x 48 = 384 4 x 52 = 208 384 - 208 = 176 73 74 75 76 77 84 85 86 87 88 95 96 97 98 99 106 107 108 109 110 117

  2. Mathematical Coursework: 3-step stairs

    Nonetheless, I will use different shaped grids i.e. 6cm by 6cm to demonstrate that my formula is utilize in any circumstance. In addition, I will change the 3 step stairs into different steps such as; 4-step stairs. These changes enable me to investigate further and fully grasp the perception of the link between the stair shape and stair total.

  1. Number Grids

    of the same size have the same difference then instead of using the numbers we can change it into algebra by replacing the length number with the letter L. These are the corners for a square of any length sides i.e.

  2. Number grids

    10 x 10 Grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work