• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grids - Algebra

Extracts from this document...

Introduction

Number Grid Coursework

I am doing this experiment to see if there are any patterns in squares on a 1 - 100 grid. I will then see if I can make a formula to express these patterns.

2 x 2 Squares

My 2 x 2 square is 14, 15, 24 and 25. The top left times by the bottom right is 14 x 25, this equals 350. The top right multiplied by the bottom left is 15 x 24 = 360. To finish I will take the smaller of the two numbers from the larger. This is 360 – 350 = 10.

My 2 x 2 square is 84, 85, 94 and 95. The top left times by the bottom right is 84 x 95, this equals 7980. The top right multiplied by the bottom left is 85 x 94 = 7990. To finish I will take the smaller of the two numbers from the larger. This is 7990 – 7980 = 10.

My 2 x 2 square is 27, 28, 37 and 38. The top left times by the bottom right is 27x 38, this equals 1026. The top right multiplied by the bottom left is 28 x 37 = 1036. To finish I will take the smaller of the two numbers from the larger. This is 1036 – 1026 = 10.

...read more.

Middle

X + 2

X + 10

X + 11

X + 12

X + 20

X + 21

X + 22

(X2 + 2X + 20X + 40) – (X2 +22X) = 40

FORMULA = (X2 + 22X + 40) - (X2 +22X) = 40

4 x 4 Squares

My 4 x 4 square is 17, 18, 19, 20, 27, 28, 29, 30, 37, 38, 39, 40, 47, 48, 49 and 50. The top left times by the bottom right is 17 x 50 = 850. The top right multiplied by the bottom left is 20 x 47 = 940. The difference between the smaller and bigger numbers is 940 – 850 = 90.

My 4 x 4 square is 1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33 and 34. The top left times by the bottom right is 1 x 34 = 34. The top right multiplied by the bottom left is 4 x 31 = 124. The difference between the smaller and bigger numbers is 124 – 34 = 90.

My 4 x 4 square is 62, 63, 64, 65, 72, 73, 74, 75, 82, 83, 84, 85, 92, 93, 94 and 95. The top left times by the bottom right is 62 x 95 = 5890. The top right multiplied by the bottom left is 65 x 92 = 5980. The difference between the smaller and bigger numbers is 5980 – 5890 = 90.

My 4 x 4 square is67, 68, 69, 70, 77, 78, 79, 80,87, 88, 89, 90, 97, 98, 99 and 100. The top left times by the bottom right is 67 x 100 = 6700. The top right multiplied by the bottom left is 70 x 97 = 6790. The difference between the smaller and bigger numbers is 6790 – 6700 =90.

I have found that for any 4 x 4 square on a 1-100 grid the difference between the two numbers is 90.

Algebra – 4 x 4

X

X + 1

X + 2

X + 3

X + 10

X + 11

X + 12

X + 13

X + 20

X + 21

X + 22

X + 23

X + 30

X + 31

X +32

X + 33

...read more.

Conclusion

My 5 x 5 square is 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 81, 82, 83, 84, 85, 91, 92, 93, 94 and 95. The top left times by the bottom right is 51 x 95 = 4845. The top right multiplied by the bottom left is 55 x 91 = 5005. The difference between the smaller and bigger numbers is 5005 – 4845 = 160.

My 5 x 5 square is 56, 57, 58, 59, 60, 66, 67, 68, 69, 70, 76, 77, 78, 79, 80, 86, 87, 88, 89, 90, 96, 97, 98, 99 and 100. The top left times by the bottom right is 56 x 100 = 5600. The top right multiplied by the bottom left is96 x 60 = 5760. The difference between the smaller and bigger numbers is 5760 – 5600 = 160.

I have found that they all end out that the difference between the two numbers of any 5 x 5 squares on a 1 – 100 grid is 160.

Algebra - 5 x 5

X

X + 1

X + 2

X + 3

X + 4

X + 10

X + 11

X + 12

X + 13

X + 14

X + 20

X + 21

X + 22

X + 23

X + 24

X + 30

X + 31

X +32

X + 33

X + 34

X + 40

X + 41

X + 42

X + 43

X + 44

(X2 + 40X + 4X + 160) – (X2 + 44X) = 160

FORMULA = (X2 + 44X + 160) – (X2 + 44X) = 160

Algebra for All

The algebra for all the equations is 10(n-1)2. This formula can be used to find out any size square on a 10 x 10 grid.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Investigation of diagonal difference.

    I'll try it for a 2 x 4 cutout. I predict that the diagonal difference will be 30 So in the case of a 2 x 4 cutout the diagonal difference = (4-1)10 = 30 My prediction was correct But this solution will not work for a vertically aligned cutout as there is more than one G.

  2. Number Grids Investigation Coursework

    = w ((n - 1) (n - 1)) = w (n - 1)2 As the formula I worked out was D = w (n - 1)2 and the expression for the difference between

  1. Number Grids

    36 12x32=384 8x36=288 384-288=96 Using algebra, I will now prove that 96 is the result for all 5x5 grids taken from a 6x6 master grid. x x+1 x+2 x+3 x+4 x+6 x+7 x+8 x+9 x+10 x+12 x+13 x+14 x+15 x+16 x+18 x+19 x+20 x+21 x+22 x+24 x+25 x+26 x+27 x+28 (x+4)(x+24)=x2+96+28x x(x+28)

  2. Number Grids

    difference between the products of the 2x2 is 10, and not 1 (meaning all the square numbers would be 10 times larger than they would be). So, my rule that I am predicting is that the differences go up in square numbers, multiplied by 10.

  1. Maths Grids Totals

    + x(n-1) + 11(n-1)2 - x2 - 12x(n-1). The x2 and -x2 cancel each other out, while the 11x(n-1) and x(n-1) add together to cancel out the -12x(n-1). This leaves 11(n-1)2, which is the overall formula for an 11 x 11 grid. A 10 x 10 grid's formula is 10(n-1)2, a 9 x 9 grid is 9(n-1)2 and an 11 x 11 grid is 11(n-1)2.

  2. Mathematical Coursework: 3-step stairs

    113 114 115 116 117 118 119 120 97 98 99 100 101 102 103 104 105 106 107 108 85 86 87 88 89 90 91 92 93 94 95 96 73 74 75 76 77 78 79 80 81 82 83 84 61 62 63 64 65 66

  1. The patterns

    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 21 26 27 11 x 21 = 231 20 x 12 = 240 240 - 231 = 9 I shall now use letters to prove this correct X X+1 X+9 X+10 X(X+10)

  2. Number Grids

    an LxL square n n+(L-1) n+10(L-1) n+11(L-1) The corners are then multiplied as with the numerical examples which leaves us with two algebraic equations that need subtracting to find the difference. These are. n x [n+11(L-1)]= n2 +11n(L-1) And [n+(L-1)]x[n+10(L-1)]= n2 +10n(L-1)+1n(L-1)+10(L-1) 2 n2 +10n(L-1)+1n(L-1)+10(L-1) 2 - [n2 +11n(L-1)]= 10(L-1)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work