• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Stairs

Extracts from this document...

Introduction

GCSE Coursework – Number Stairs Investigation

Part 1

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

image00.png

This is a 10 x 10 size grid with a 3-stair shape in gray. This is called the stair total.

  The stair total for this stair shape is 25 + 26 + 27 + 35 + 36 + 45 = 194.

 To investigate the relationship between the stair total and the position of the stair shape, I will use the far-left bottom square as my stair number:

This is always the smallest number in the stair shape. It is 25 for this stair shape.

 Now , I'm going to translate this 3-stair shape to different positions around the 10 x 10 grid:

44

34

35

24

25

26

...read more.

Middle

The stair-total for this stair shape is   4 + 5 + 6 + 14 + 15 + 23 = 68

 This table summarizes these results :

Stair number

24

25

26

25

3

4

Stair Total

188

194

200

206

62

68

  In order to find a formula which give  the stair total when I am given the stair number,

  I am going to put the stair number as the position and the stair total as the term for the

   sequence:

Position

24

25

26

27

3

4

Term

188

194

200

206

62

68

Difference

+6

+6

+6

  I have noticed that there is an increase of 6 between two consecutive terms in this

  arithmetic sequence. Therefore the term rule must be  6 x Position±  number .

Position (n)

24

25

26

27

3

4

Term ( T )

188

194

200

204

62

68

    6n

144

150

156

162

18

24

+  or  

+44

+44

+44

+44

+44

+44

   We can notice that the term is always 6 times the position, Add 44 .

...read more.

Conclusion

To check if this formula works for other stair numbers, I will try another numbe 55

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

Stair-total =         6n + 44

( using the formula )  = 6(55) + 44

                                    = 330 + 44

                                =  374

Stair-total         = 55 + 56 + 57 + 65 +  66 + 75

( by adding )        =         374

This shows that my formula must work for all stair-numbers in 3-stair shapes on the 10 x 10 grid.

 However, I have observed that you could just sub any number as 'n' into the formula and

 you could still get a stair total even if that stair shape cannot actually be drawn on the grid.

 For instance, we could  substitute  'n'  by 10 into the formula like this:

 Tn = 6n + 44

       = 6(10) + 44

       = 60 + 44

       = 104

  However it is impossible to draw a stair shape with the bottom left-hand number as

  10, simply because it would not fit.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    The results are conclusive and consistent, proving the theory to be accurate and reliable. Using any of the algebra equation from the above table, e.g. 10x-90 or 10x-110 we can prove the results for any 4-step grid: 21 Formula: 10x- 90 31 32 1: 10 x 51 - 90= 420

  2. Number Stairs

    And 3-Step Stair is 44. and by looking at the diagram above(11s3-11s) the workings gives you 66 and 264. I notice if I divide 66 by 6.I get 11, and if I divide 264 by 6. I also get 44.W hich is correct. So I will try and see if it works for the rest of the Stairs.

  1. Number stairs

    Till this point I have found many algebra formulas for my 3-step stair on a number of grids such as: 10 by 10 Number Grid and the algebra formula is 6 x + 44 11 by 11 Number Grid and the algebra formula is 6 x + 48 12 by

  2. Number Stairs

    By substituting the stair number to the nth term we get the stair total. Here we can see that is clearly evident that the remaining part in the nth term for the 8x8 grid has decreased by 4 as compared to the 9x9 grid.

  1. Mathematics - Number Stairs

    44 T = 6n + 48 T = 6n + 52 4 5 2-Step Staircase/ Grid Width 10 11 1 2 n 1 2 3 4 5 T 14 17 20 23 26 Suspected formula: T = 3n + 11 Prediction / Test: 3 x 31 + 11 = 104

  2. Maths Coursework: Number Stairs

    11 + 12 + 13 + 21 + 22 + 31 = 120. I can therefore conclude that the general equation for a 4-step stair on a 10 by 10 number grid is 10n + 110 = stair total where n is the base number.

  1. Mathematical Coursework: 3-step stairs

    3+4+5+13+14+23= 62 91 92 93 94 95 96 97 98 99 100 81 82 83 84 85 86 87 88 89 90 71 72 73 74 75 76 77 78 79 80 61 62 63 64 65 66 67 68 69 70 51 52 53 54 55 56 57 58

  2. Number Stairs Coursework

    This is because not all of the position can be used as some numbers on the grid cannot be reached. Prediction I predict that there is going to be a pattern between the position of the 3-step stair and the total of the numbers inside it.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work