• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  • Level: GCSE
  • Subject: Maths
  • Word count: 2284

Number Stairs - Up to 9x9 Grid

Extracts from this document...

Introduction

                                                                                                               Number Stairs

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

This is a 3-step stair.

The total of the numbers inside the stair shape above is:

  • 1st Line: 25+26+27
  • 2nd Line: 35+36
  • 3rd Line: 45

T=Total        T=194

The stair total for this 3-step stairs is 194.

Part 1

image00.png

  • 1st Line: 25+26+27
  • 2nd Line: 35+36                        Going up by 1
  • 3rd Line: 45

image00.png

45

46

47image10.png

35

36

37

25

26

27

Hypothesis: The number from left to right are going up by 1 and the numbers going from bottom to top are going up by 10, therefore if I was given the bottom left hand corner on a 10 by 10 square grid, I would know the rest of the number stair digits.

E.g. Bottom left hand corner number.
image00.pngimage13.png

88

89

90

78

79

80

68

69

70

On a different number square grid, e.g. 4 by 4 number square grid, the theory would be the same, except that the number above the bottom left hand corner number is going to go up by 4.
image14.png

13

14

15

16image15.png

9

10

11

12

5

6

7

8

1

2

3

4

The total of the numbers inside the stair shape is:

  • 1st Line: 1+2+3
  • 2nd Line: 5+6
  • 3rd Line: 9

T=Total        T=26

The stair total for this 3-step stair is 26.

Part 2

I have investigated further and I have found out that the number going diagonal in a 10 by 10 number square grid…

E.g. On a 10 by 10 number square grid

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44image16.png

45image17.pngimage18.png

46image01.png

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25image02.pngimage03.png

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

...read more.

Middle

10image07.png

11

12

5

6image08.png

7

8

1image03.pngimage09.png

2

3

4

Top right corner number stair, the total is always higher.

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

The total of the numbers inside the top right corner number stair shape is:

  • 1st Line: 78+79+80
  • 2nd Line: 88+89
  • 3rd Line: 98

T=Total        T=452

Bottom left hand corner number stairs, the total is always lower.

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

E.g.

The total of the numbers inside the bottom left hand corner number stair shape is:

  • 1st Line: 1+2+3
  • 2nd Line: 11+12
  • 3rd Line: 21

T=Total        T=50

                                                                                                     Finding the formula

Hypothesis: I have found out that to find the formula for any number square you must firstly make one of the numbers in that stair pattern as ‘x’.

...read more.

Conclusion

Formula: 10x + 10 + 10g

I tested out this formula on any grid size I preferred (6 x 6 grid).

19

13

14

7

8

9

1

2

3

4

1 + 2 + 3 + 4 + 7 + 8 + 9 + 13 + 14 + 19 =80

10 x 1= 10 + 10=20                10 x 6 = 60

60 + 20 = 80  Correct.

9x9 grid – 5 step stair

37image11.png

28

29

19

20

21

10

11

12

13

1

2

3

4

5

Total = 215

Algeraic: x + x + 1 + x + 2 + x + 3 + x + 4 + x + g + x + g + 1 + x + g + 2 + x + g+ 3 + x + 2g + x + 2g + 1 + x + 2g + 2 + x + 3g + x + 3g + 1 + x + 4g = Formula: 15x + 20 + 20g

I will now test this formula on a 7 x 7 grid, but still staying with a 5 step stair.

29image11.png

22

23

15

16

17

8

9

10

11

1

2

3

4

5

  Total = 175

So, 15 x 1 = 15 + 20 = 35        20 x 7 = 140

140 + 35 = 175

Again this shows that my 5 step stair formula for any grid size is correct.

Finding the algebraic formula

2 step stair = 3x + 1 + g

3 step stair = 6x + 4 + 4g

4 step stair = 10x + 10 + 10g

5 step stair = 15x + 20 + 20g

???             =21x + 35 + 35g

I have noticed a certain pattern which occurs constantly through the formulas. In the first column it goes up in triangle numbers:

3x, 6x, 10x , 15x

I believe that the next number will be 21, because 15 add the next triangle number in the pattern which is 6 is 21. Also for the last part of the formula I had to find the difference from the numbers at the end of the formulas so that I could notice a pattern.

image12.png

      … g                        

 3

      … 4g             3

 6

      … 10g             4

 10

      … 20g              5

15

21x + … + …?(35g)

Algebraic formulas for and grid size

2 step stair = 3x + 1 + g

3 step stair = 6x + 4 + 4g

4 step stair = 10x + 10 + 10g

5 step stair = 15x + 20 + 20g

6 step stair = 21x + 35 + 35g

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number stairs

    together without a formula is= 1+2+3+16+17+31= 70 [The stair total for this 3-step stair is 70] My general formula to find the total values in a 3-step stair on a 15 by 15 grid is correct. This is because all the stair values in a 3-step stairs added together on

  2. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    the table by using these numbers square as shown below: From the table below and using our results from the investigation we can see a pattern emerging. Every time the size of the grid square increases, the value in the algebra formula increases by 10.

  1. Number Stairs

    This is for the 8x8 grid with the stair number 1. Stair number= 2 Whereas the stair total= 2+3+4+10+11+18 = 48 = T Stair number=3 Whereas the stair total= 3+4+5+11+12+19= 54 = T The following table shows the stair total (T)

  2. Number stairsMy aim is to investigate the relationship between the stair total and the ...

    4 step stair on different size grids 57 58 59 60 61 62 63 64 49 50 51 52 53 54 55 56 41 42 43 44 45 46 47 48 33 34 35 36 37 38 39 40 25 26 27 28 29 30 31 32 17 18 19

  1. Maths coursework. For my extension piece I decided to investigate stairs that ascend along ...

    = 300 ? This must mean that my formula Un = 10n + 10g + 10 - where 'n' is the stair number, 'g' is the grid size, and 'Un' is the term which is the stair total - works for all 4-stair numbers on any size grid.

  2. Maths Coursework: Number Stairs

    using 1 as the base number on a 10 by 10-number grid is 644 as 1 + 2 + 3 + 4 + 5 + 6 + 7 + 11 + 12 + 13 + 14 + 15 + 16 + 21 + 22 + 23 + 24 + 25

  1. Mathematics - Number Stairs

    52 58 64 70 Suspected formula: T = 6n + 40 Prediction / Test: 6 x 20 + 40 = 160 38 29 30 20 21 22 20 + 21 + 22 + 29 + 30 + 38 = 160 Algebraic Proof: n+18 n+9 n+10 n n+1 n+2 n + (n+1)

  2. Number Stairs

    So from here on I will try not to include those stairs that cannot fit in to my 10 by 10 grid As seen in the diagram there's constant difference between the Stair totals of each stair, which is 6.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work