# Number Stairs

Extracts from this document...

Introduction

Number coursework 1

In this piece of coursework I am going to investigate the relationship between the stair total and the position of the stair shape on the grid. I am also going to further investigate about the stair total and grid size.

I will use (T) for my stair total, and (N) for my stair number.

81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | |||||||

71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | |||||||

61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | |||||||

51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | |||||||

41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | |||||||

31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |||||||

21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |||||||

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||||||

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||||

21 | ||

11 | 12 | |

1 | 2 | 3 |

Stair number (N), which is 1.

By calculating the sum of all figures inside the stairs gives you the stair total.The symbol for the stair total is (T). With the stair number 1 we get a stair total of 1+2+3+11+12+21=50. The stair total is calculated accordingly to the stair number.

91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | |||||||

81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | |||||||

71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | |||||||

61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | |||||||

51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | |||||||

41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | |||||||

31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |||||||

21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |||||||

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||||||

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||||

22 | ||

12 | 13 | |

2 | 3 | 4 |

Stair number (N), which is 2.

Thus our stair total for this stair grid in the 10x10 grid is, 2 + 3 +4 +12 +13 +22 = 56. Therefore T = 56.

91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

...read more.
Middle
Here is an 8x8 grid showing the stair total and the stair number:
Stair number (n)=1
Stair number= 2 Whereas the stair total= 2+3+4+10+11+18 = 48 = T
Stair number=3 Whereas the stair total= 3+4+5+11+12+19= 54 = T The following table shows the stair total (T) depending on the relevant stair number for the 8x8 grid. Which are from 1 to 5.
42 48 54 60 66 +6 +6 +6 +6 It is clear that the difference between the numbers is 6. This means that the formula, to solve the total, must include a multiple of 6. This will lead to the fact that the nth term has to have 6n in the formula, the extra is calculated by working out what is left over this will be +36.Therefore, the formula has to be T =6n + 36. By substituting the stair number to the nth term we get the stair total. Here we can see that is clearly evident that the remaining part in the nth term for the 8x8 grid has decreased by 4 as compared to the 9x9 grid. The way how this formula works is the following:
Which means that (6 x STAIR NUMBER) + 40 = STAIR TOTAL Now that I have worked out the formula for the 8x8 grid I am going to use the formula in random staircases with random stair numbers. And those are:
Here we can see that stair number= 46 Whereas stair total= 46+47+48+54+55+62=312 But by using the nth term, stair total= (6x46) + 36= 312
Stair number=41 Whereas stair total= 41+42+43+49+50+57= 282 But by using the nth term, stair total= (6x41) + 36= 282
Stair number=27 Whereas stair total= 27+28+29+35+36+43=198 Conclusion
9+9+1+9+10= 3(9) +11= 38 ...read more.
Here is another example:
Total for algebraic staircase= n+n+1+n+10 = 3n + 11 We can also evaluate that Stair number (n) = 79 By substitution stair total= 79+79+1+79+10= 3(79) +11= 248 Now I am going to begin my investigation with the 9x9 grid size for the 2 step stair case:
Here we can see that the stair number = 1 Therefore the stair total = 1+2+10=13
Stair number = 2, therefore, stair total = 2+3+11= 16
Stair number = 3, therefore stair total = 3+4+12= 19 The following table shows the stair total (T) depending on the relevant stair number for the 7x7 grid, with stair case number4. Which are from 1 to 5.
13 16 19 22 25 +3 +3 +3 +3 Now that I solve the total, must include a multiple of 10. This will lead to the fact that the nth term has to have 3n in the formula, the extra is calculated by working out what is left over this will be +10.Therefore, the formula has to be T =3n + 10. By substituting the stair number to the nth term we get the stair total. The way how the formula was in algebraic terms is: Formula to find out and nth term of any linear sequence = dn + (a-d) =T a= First term in the linear sequence = 13 d= common difference = 3 n=stair number T = stair total By substitution, nth term was formed by: (3)(n) + (13-3) = 10n + 11 The way how the formula works is the following:
Which means that (3 x STAIR NUMBER) + 10 = STAIR TOTAL
Here is an alternative way to find the stair total of the 9x9 grid by using further algebraic method for the 2 step stair case.
As we can see here n=stair number, and the 2x2 stair case from the 9x9 grid can be substituted in to the formula staircase for the 9x9 grid. Total for algebraic staircase= n+n+1+n+9 = 3n + 10 We can also evaluate that Stair number (n) = 8
By substitution stair total= 8+8+1+8+9= 3(8) +10= 34 Here is another example:
Total for algebraic staircase= n+n+1+n+9 = 3n + 10 We can also evaluate that Stair number (n) = 71 By substitution stair total= 71+71+1+71+9= 3(71) +10= 223 This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section. ## Found what you're looking for?- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month
Read more
(The above preview is unformatted text)
## Found what you're looking for?- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month
## Looking for expert help with your Maths work? |