opposite corners

Authors Avatar

GCSE Maths Coursework

Opposite Corners

I have been given the task to investigate the differences of the products of the diagonal opposite corners of a square on a 10x10 Grid with the numbers 1 to 100 to start with.

I will start with a 2 x 2 square on a 10 x 10 grid and discover the rule for it, then I will progress onto a 3 x 3 square on the same grid. I will then keep on going until I eventually find the rule for any sized square on a 10 x 10 grid.

2x2 Square

(2 x 11) – (1 x 12) = 10

(14 x 25) – (15 x 24) = 10

(8 x 17) – (7 x 18) = 10

(20 x 29) – (19 x 30) = 10

I have discovered that the answer is always 10 I will now use algebra to see if the answer is once again 10.

(n+1)(n+10) – n(n+11)

(n2+11n+10) – (n2+11n)

10

As the algebraic equation also gives the answer of 10 I know it must be right. As I believe I can keep on learning throughout the investigation I will now move onto a 3x3 square on the same grid. I predict that once again all answers will be the same.

3 X 3 Square

(3 x 21) – (1 x 23) = 40

(6 x 24) – (4 x 26) = 40

(10 x 28) – (8 x 30) = 40

I believe the answer will always be 40 for a 3 x 3 square on this grid. So I will now use algebra to see if I am correct.

(n+2)(n+20) – n(n+22)

(n2+20n+2n+40) – (n2+22n)

Join now!

40

This proves that the answer is always 40 when a 3 x 3 square is placed on a 10 x 10 grid.

I am now going to use a 4 x 4 square on a 10 x 10 grid. The only difference will be that I will only use algebra as numbers are very time consuming.

4 x 4 square

(n+3)(n+30) – n(n+33)

(n2+30n+3n+90) – (n2+33n)

90

As I am doing so well I will continue to go on to a 5 x 5 square on the 10 x 10 grid.

...

This is a preview of the whole essay

Here's what a teacher thought of this essay

Avatar

This is a very well structured investigation. The relationships are clearly described through written, numeric and algebraic explanation. There are specific strengths and improvements suggested throughout.