• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Perfect Shapes

Extracts from this document...

Introduction

Perfect Shapes A perfect shape is said to be one that has the same area and perimeter. (1) Find the area and perimeter of the rectangle below. (2) Is the rectangle perfect? (3) Investigate perfect rectangles (4) Extend your investigation into other shapes. Perfect Shapes A perfect shape is defined to be one in which its perimeter is equal to its area. Rectangles I will begin by assuming that two of the sides of the rectangle are of length 5: A 5 by 1 rectangle is therefore not perfect and we need to investigate others: A 5 by 2 rectangle is not perfect either. I will tabulate further results in my quest to find a perfect 5 by something rectangle: Rectangle Length Width Area Perimeter Perimeter - Area 5 1 5 12 7 5 2 10 14 4 5 3 15 16 1 5 4 20 18 -2 5 5 25 20 -5 5 6 30 22 -8 5 7 35 24 -11 5 8 40 26 -14 5 9 45 28 -17 5 10 50 30 -20 Table 1 Looking at Table 1 it can be seen that no perfect shape has been found. ...read more.

Middle

7 28 22 -6 4 8 32 24 -8 4 9 36 26 -10 4 10 40 28 -12 This is interesting in that it shows that a 4 by something perfect rectangle is a square. Let us consider a general square to see if any other perfect square exists: A graph to illustrate this relationship might be useful: Graph 1 We can see from Graph 1 that in two places: and . The zero solution makes no sense but this confirms that if a square is 4 by 4 then it is perfect. As there is only one non-zero crossing point it also illustrates that there is only one perfect square. Let us return to the algebra briefly: Which confirms the result from the graph and proves that a 4 by 4 square is the only one that exits. It might be interesting to see if this pattern is true for other regular polygons, is there only one perfect equilateral triangle? Is there only one perfect equilateral pentagon? These questions I will attempt to address later. So far in this investigation the length of a rectangle has been fixed, it will be useful to relax this condition and consider the more general case of a perfect rectangle: Suppose that the length and ...read more.

Conclusion

#NUM! 25 #NUM! B C D E F G 2 y x h A P 3 Length of the equal sides Length of the base Perpendicular height Area of Triangle Perimeter of triangle Perimeter -Area 4 7 1 6.98 3.49 15 11.51 5 7 2 6.93 6.93 16 9.07 6 7 3 6.84 10.26 17 6.74 7 7 4 6.71 13.42 18 4.58 8 7 5 6.54 16.35 19 2.65 9 7 6 6.32 18.97 20 1.03 10 7 7 6.06 21.22 21 -0.22 11 7 8 5.74 22.98 22 -0.98 12 7 9 5.36 24.13 23 -1.13 13 7 10 4.90 24.49 24 -0.49 14 7 11 4.33 23.82 25 1.18 15 7 12 3.61 21.63 26 4.37 16 7 13 2.60 16.89 27 -10.11 Note the lack of sign change in the Area - Perimeter column suggesting that perfect 4, 4, x and 6, 6, x isosceles triangles do not exist. There are two sign changes in the 7, 7, x table and so it seems that two perfect isosceles triangles exist with these dimensions. Let me investigate this further: To be completed... let me know if you would like a copy of the completed version.......... Page 1 of 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Geography Investigation: Residential Areas

    The only thing that is bluntly true about my hypothesis is that the first road, Sarum Hill, has the highest externality point and the furthest road, The Beaches, has the lowest. The data I have collected can give me no final conclusion and therefore my hypothesis has been rejected. 4)

  2. Regeneration has had a positive impact on the Sutton Harbour area - its environment, ...

    Again we tried to cover a large area to gain as much data as possible. In advance we worked out where each of the group members were to carry out the survey and we planned to carry out each of the 10 surveys between a certain time to give a fair result.

  1. An Investigation into the Varying Isoperimetric Quotients of Differing Shapes.

    At the moment I don't have this. So I am going to cut the square into 8 equal segments. We now have a right angle triangle, but we don't yet have another angle in it, so we still cant perform trigonometry. The square is now made up of 8 right angle triangles, the center of the square

  2. In my investigation I am going to work on different shapes with a perimeter ...

    If I started with 300 meters, the base would have been 400 meters, which is impossible for an isosceles triangle. You will also notice that the area increases, as the three sides get closer in length. Therefore my next step will be to try the area of an equilateral triangle with perimeter 1000 meters.

  1. Investigating different shapes of gutters.

    9 You can see that for the multiples of three the angle, which gives the best area, is 30? and the best value for x is 1/3 of the Length (L). I notice that the maximum value on the two-way table is surrounded by symmetry as you can see more clearly on the following sheets.

  2. Investigate different shapes of guttering for newly built houses.

    The formula to find the circumference is: Circumference = ??diameter 60 = ??d 60?? = d 19.098593 = d Diameter ? 2 = radius 19.098593? 2 = 9.5492965 So the area of the semi-circle is: A =1/2??r� =0.5???9.5492965� =143.2394462cm� =143.2cm� Conclusion As nothing can be varied for the semi-circle the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work