• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  • Level: GCSE
  • Subject: Maths
  • Word count: 1274

Perimeter Investigation

Extracts from this document...

Introduction

I will be investigating the shape, or shapes, that could be used to fence a plot of land, which contains the maximum area, using exactly 1000 metres. To start I will be investigating the rectangle family as shown below:

image00.png

image01.png

image12.pngimage23.png

image31.pngimage40.png

image48.png

image55.png

image56.png

image57.png

image03.pngimage04.pngimage02.pngimage07.pngimage05.pngimage06.png

image08.pngimage10.pngimage09.png

image14.pngimage13.pngimage11.png

image16.pngimage15.pngimage17.png

image20.pngimage19.pngimage18.png

From these results, the maximum area using exactly 1000 metres of fencing is the rectangle that measures 250 by 250. Its area is 62500m², which is the biggest area and it is square in shape, which proves that the square is the best to use, when investigating four sided shapes.

I have plotted a graph from these results obtained:

image58.png

...read more.

Middle

image24.pngimage36.pngimage24.pngimage35.pngimage24.pngimage34.pngimage33.pngimage24.pngimage32.pngimage42.pngimage41.png

Base/m

Sides/m

Perpendicular Height/m

Area/m²

50

475

474.3

11857.5

100

450

447.2

22360

150

425

418.3

31372.5

200

400

387.3

38730

250

375

353.6

44200

300

350

316.2

47430

350

325

273.9

47932.5

400

300

223.6

44720

450

275

        158.1

35572.5

From these results, the maximum area using exactly 1000 metres of fencing is the triangle that measures, base 350m, sides 325m and an area of 47932.5m². This triangle is the best to use when investigating 3 sided shapes, because it has the biggest area and a perimeter of 1000 metres.

I decided to use regular shapes through-out my investigation because only regular shapes, i.e. shapes with equal sides, give the maximum area. So this is why I decided to use equilateral triangles.  

In my triangle investigation, I decided to start with a base of 50 metres and investigate the area using that base. I did not investigate triangles with a base above 450 metres because the area kept on decreasing. For example, the triangle with base 500 metres and sides 250 metres gave an area of 0 metres.

(Here will be a graph for Base/Area and another graph for sides/perpendicular height)

From the triangle exercise, I have determined that the shape with equal sides gives the maximum area.

...read more.

Conclusion

From these results, it appears that if we make a polygon of infinite sides, it would give me the maximum area. The polygon with maximum sides can only be a circle because each point on the circumference could be a side and the height will be the radius. If we make a polygon with 1000 sides of 1m each, the length of a side would become a dot and the shape would become a circle. Therefore it can be concluded that the circle would have the maximum area for a given perimeter.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Investigating different shapes to see which gives the biggest perimeter

    Pentagons: Pentagons have 5 sides. I am now going to investigate a pentagon with 5 equal sides. Each side should have a base of 200m. The pentagon will have a perimeter of 1000m. To find out the area of this pentagon, I will need to break the pentagon up into 5 triangles of the same area.

  2. Investigation to find out the number of matchsticks on the perimeter in a matchstick ...

    difference 2nd difference In my table when b = 0, t = 0 so c = 0.

  1. Borders Investigation

    Therefore the formula appears to work. As with perimeter, we can now look at the formula and obtain some visual understanding of why it works. We mentioned previously that the diameter of the shape could be represented by (2n for either side, 1 for the centre).

  2. Geography Investigation: Residential Areas

    I follow this road until the roundabout and then go along a road called Cliddesden Lane. I stopped at a street called, The Beaches. The Beaches is the beginning of an area called Hatch Warren. I have purposely not collected data from this area.

  1. Fencing - maths coursework

    10594.49692 However, this is not the final bit of the formula, because there was 7 triangles in the heptagon so we have to times our answer (10594.49692) by 7 to get the area of the whole heptagon. So finally the last step to find out the area of the whole

  2. Biological Individual Investigation What Effects Have Management Had On Grasses In Rushey Plain, Epping ...

    Risk Assessment Rushey Plain consists of a wooded area, and a cleared, grassy area. There is a foot and wheelchair path running through the wooded area, and the between the wooded and grassy areas. In the wooded area, there is the risk of low branches hitting people on the head, or poking them in the eye.

  1. My investigation is about a farmer who has exactly 1000 metres of fencing and ...

    Firstly I am going to look at the isosceles triangle; this is a triangle in which 2 of the sides and 2 of the angles are the same. As I am using triangles I can use the equation: Area (A)

  2. When the area of the base is the same as the area of the ...

    I drew a net of a rectangle 18 by 8 and then cut off 0.5 etc of each of the 4 corners. I then measured the Area of the base, the area of the 4 sides and the volume. To measure the area of the base and the area of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work