• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  • Level: GCSE
  • Subject: Maths
  • Word count: 1274

Perimeter Investigation

Extracts from this document...

Introduction

I will be investigating the shape, or shapes, that could be used to fence a plot of land, which contains the maximum area, using exactly 1000 metres. To start I will be investigating the rectangle family as shown below:

image00.png

image01.png

image12.pngimage23.png

image31.pngimage40.png

image48.png

image55.png

image56.png

image57.png

image03.pngimage04.pngimage02.pngimage07.pngimage05.pngimage06.png

image08.pngimage10.pngimage09.png

image14.pngimage13.pngimage11.png

image16.pngimage15.pngimage17.png

image20.pngimage19.pngimage18.png

From these results, the maximum area using exactly 1000 metres of fencing is the rectangle that measures 250 by 250. Its area is 62500m², which is the biggest area and it is square in shape, which proves that the square is the best to use, when investigating four sided shapes.

I have plotted a graph from these results obtained:

image58.png

...read more.

Middle

image24.pngimage36.pngimage24.pngimage35.pngimage24.pngimage34.pngimage33.pngimage24.pngimage32.pngimage42.pngimage41.png

Base/m

Sides/m

Perpendicular Height/m

Area/m²

50

475

474.3

11857.5

100

450

447.2

22360

150

425

418.3

31372.5

200

400

387.3

38730

250

375

353.6

44200

300

350

316.2

47430

350

325

273.9

47932.5

400

300

223.6

44720

450

275

        158.1

35572.5

From these results, the maximum area using exactly 1000 metres of fencing is the triangle that measures, base 350m, sides 325m and an area of 47932.5m². This triangle is the best to use when investigating 3 sided shapes, because it has the biggest area and a perimeter of 1000 metres.

I decided to use regular shapes through-out my investigation because only regular shapes, i.e. shapes with equal sides, give the maximum area. So this is why I decided to use equilateral triangles.  

In my triangle investigation, I decided to start with a base of 50 metres and investigate the area using that base. I did not investigate triangles with a base above 450 metres because the area kept on decreasing. For example, the triangle with base 500 metres and sides 250 metres gave an area of 0 metres.

(Here will be a graph for Base/Area and another graph for sides/perpendicular height)

From the triangle exercise, I have determined that the shape with equal sides gives the maximum area.

...read more.

Conclusion

From these results, it appears that if we make a polygon of infinite sides, it would give me the maximum area. The polygon with maximum sides can only be a circle because each point on the circumference could be a side and the height will be the radius. If we make a polygon with 1000 sides of 1m each, the length of a side would become a dot and the shape would become a circle. Therefore it can be concluded that the circle would have the maximum area for a given perimeter.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Mathematics Gcse Coursework Tubes Investigation

    The width is three times longer and the length is three times shorter. Given the piece of paper is 8cm by 96cm. To calculate the volume of this cube then must follow the steps: 96 � 4 = 24cm 24 � 24 = 576cm2 576 � 8 = 4608cm3 The

  2. Fencing investigation.

    Therefore the area is always less than a similar rectangle. As I explained above, I can split the shape into a rectangle and two right-angled triangles and those two triangles have their hypotenuse as the two sides of the trapezium, and in a right-angled triangle, the hypotenuse is always the longest side.

  1. Investigation to find out the number of matchsticks on the perimeter in a matchstick ...

    difference 2nd difference In my table when b = 0, t = 0 so c = 0.

  2. Maths Investigation on Trays.

    49 1.2 43.56 31.68 52.272 1.4 38.44 34.72 53.816 1.6 33.64 37.12 53.824 1.8 29.16 38.88 52.488 This says also that the hypothesis is wrong but I think it is right because I still haven't worked out the value I found when using the method early where it said the

  1. Maths Fence Length Investigation

    This would also be a lot easier as many of the other shapes have millions of different variables. H h O The next shape that I am going to investigate is the pentagon. Because there are 5 sides, I can divide it up into 5 segments.

  2. Difference in Japans Two Biggest Regions: Kanto and Kansai

    One of the most famous tourist attractions of Japan, Nikko (old temples) is in this prefecture (approximately one hour train ride from Tokyo). Other famous parts of Tochigi include a region called Nasu in Tochigi known for onsens and local sake and ski resorts.

  1. Borders Investigation

    When we substitute the value four for n in our formula, we get: If we then count the number of squares in this cross (and hence measure its area), we can see that it is also four. Therefore the formula appears to work.

  2. Investigating different shapes to see which gives the biggest perimeter

    To work out the area of an isosceles triangle, I will use the following formula: Area = 1/2 Base x Height So before I can work out the area, I need to work out the height of the isosceles triangle.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work