• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

rectangles. I will be trying to develop a formula that will enable me to calculate the sum of all the numbers in a rectangle given

Extracts from this document...

Introduction

image00.png

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

image01.png

image02.png

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

The value of the rectangle is 132.

We would get the value by calculating the sum of all the numbers.

A way we could find this value out could be by using a formula. But what formula could we use?

n

n+1

n+2

n+10

n+11

n+12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

The sum of the values in the turquoise box adds up to 132.

To find this, we could try n and n+12.

16+16+12=44

132÷44=3

3 are equal to the width.

So far we have w (2n + 12).

...read more.

Middle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

This time, the width of each shaded square is 4.

For the first shaded square, the values come up to 180.

4(2n+12): 4(44): 4x44= 176.

As you can see, we have changed the width, but have not changed the n+12 to n+13. If we tried this, we would get 180.

To do this so our formula is correct we would have to alter it.

W (2n+r). ‘R’ stands for the range. To make sure this formula is correct, I will try it on the remaining two squares and then on one with a completely different width.

The sum of the rose coloured box comes up to 380.

...read more.

Conclusion

R(LxW)+(LxW)

      2

14(2x5)+(2x5)

2

14(10): 140. 140÷2=70. 70+(10)=80. So far this formula has been correct, but would happen if initial term changes from 1 to a different number.

R(LxW)+(LxW)

      2        

12(2x3)+(2x3)

2

12(6)=72. 72÷2=36. 36+6=42.

This answer is incorrect.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

I could now try to split the height from 2 to 1 and adding both rows to get the final product.

w(in+1). I can change in which is the initial term to n, which will stand for the lowest number.

Width(n+1). 3(4+1)=3(5)=15. 4+5+6=15.

For the second row we will have 3(14+1)=3(15)= 45. 14+15+16=45.

45+15+60.

4+5+6+14+15+16=60.

54+55+56+57+64+65+66+67=484.

4(54+1) 4(55)= 220.

4(64+1) 4(65) 195. 220+260=480. This answer is incorrect. So instead of it being w(n+1), I am going to change it to w(n+(r-1)) for each row.

4 (54+(2))= 4(56)= 224

4(64+2)=4(66)=264. 224+264= 488. this answer is also incorrect.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Open Box Problem.

    However for this ratio I have found out that this time, the value of x, which gives this open box its maximum volume is 21, which isn't 100/5. The answer to 100/5 is 20. Although this is close, as the values gets larger the smaller the divisor seems to be.

  2. GCSE Maths coursework - Cross Numbers

    + (16+1)] + [(16-10) + (16+10)] = 16-1 + 16+1 + 16-10 + 16+10 = 4x16 = 64 This tells me that whenever I use the above formula and replace X with any number (apart from the outside edge numbers)

  1. Investigate the relationships between the numbers in the crosses.

    - (d+11)(d-9) = (d +2d) - (d -9d+11d-99) = (d +2d) - (d +2d-99) = -99 * If x is known: = (x-1)(x+2) - (x+10)(x-10) = (x +1x-1x-1) - (x -10x+10x-100) = (x +x-1) - (x +x-100) = 99 * This also implies that the outcome of the sum (d x b)

  2. For my investigation I will be finding out patterns and differences in a number ...

    73 74 75 76 83 84 85 86 53 x 86 = 4558 83 x 56 = 4648 4648 - 4558 = 90 Data calculations for 5x5 squares 51 52 53 54 55 61 62 63 64 65 71 72 73 74 75 81 82 83 84 85 91 92

  1. Investigate the difference between the products of the numbers in the opposite corners of ...

    I can see that for a 2x2 square on a 100 grid the difference is equal no matter where the shape is on the horizontal axis. This disproves my theory. I will now try moving the square vertically to see if the difference alters.

  2. My investigation will be on 3 - step stairs where I will be: ...

    76 77 78 79 80 61 62 63 64 65 66 67 68 69 70 51 52 53 54 55 56 57 58 59 60 41 42 43 44 45 46 47 48 49 50 31 32 33 34 35 36 37 38 39 40 21 22 23 24 25

  1. I will try to find a formula linking P (perimeter), D (dots enclosed) and ...

    Although T is constant in the table, I have put it into each row, as it will be incorporated into the formula that I hope to find. I am predicting that there will be straightforward correlation between P, D and T.

  2. The Open Box Problem

    To prove this, I will have to find the maximum volume for another square, and see whether that obeys with what I have predicted. Therefore a square of width 10cm should give a maximum volume when: X=10=1.667 6 This is the spreadsheet for the square of length 10cm, this will

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work