• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  • Level: GCSE
  • Subject: Maths
  • Word count: 1180

Stair shape maths GCSE coursework

Extracts from this document...

Introduction

                                                                                                                page

Coursework – Number Stairs

In order to investigate the stair shapes, I will look at the relationship among the total of 3 step stair shapes and position of stair shapes, on a 10 × 10 number grid. The shaded area, in the grid, is a 3 stair shape at position 25. The position is shown on the bottom left of every stairs. I will investigate different positions and their totals, on the 10 × 10 number grid, with the 3 stair shape (to begin with). With these results, I will be able to create a formula to show the total of 3 step stair shape, at any position, on a 10 × 10 number grid.

I will investigate further, by looking at the relationship between the different sized stair shapes, and the different sized number grids. 3 stair shape I will begin my investigation by obtaining enough results to formulate an a equation, for a 3 step stair shape I will began my investigation by obtaining enough results to formulate an equation, for a 3 step stair shape.

First I will draw a 3 stair shape at the bottom left with the number 1.

...read more.

Middle

 being the pattern.

  1.        The difference when moving one square upwards image01.png

18          The difference when moving one square side ways         image01.png

   I have also found a formula to get the total of each stairs: 6n + 44

I got this formula via:

The 6n comes from the six numbers in the stair shape i.e.:

image02.pngimage03.pngimage05.pngimage04.pngimage25.png

The Formula = 6n +44, how I get the 6n is mentioned above now I am going to show how I get the 44.

image17.png

image19.png

This shows the six n and numbers.                         20+10+11+2+1= 44

This is how I get 6n +44 which will work on finding any 3 step stairs at least that’s what I think.

This is how I worked out my formula:

T = n + (n+1) n + 2 + n + 10 + n +11+ n + 20 = 6n+44

6n + 44 will work with any number in this 10 × 10 grid and with any 3 step stairshape.

Now for part 2 I am going to investigate the further relationship between the stair totals and other step stairs on an other number grid. For this I am going to use 9× 9 and a 3 step stair shape.

image09.png

Grid: 9 Steps: 3 @1 1+2+3+10+11+19 = 46

image10.png

Grid: 9 Steps: 3 @4 4+5+6+13+14+22 = 64

image11.png

Grid: 9 Steps: 3 @7 7+8+9+16+17+25 = 82

...read more.

Conclusion

image01.png

   I have also found a formula to get the total of each stairs: 6n + 40

I got this formula via:

The 6n comes from the six numbers in the stair shape i.e.:

image02.pngimage03.pngimage04.pngimage05.pngimage14.png

The Formula = 6n +40, how I get the 6n is mentioned above now I am going to show how I get the 40.

image16.pngimage17.pngimage15.png

image19.png

This shows the six n and numbers.                         18+9+10+1+2= 40

This is how I get 6n +40 which will work on finding any 3 step stairs at least that’s what I think.

This is how I worked out my formula:

T = n + (n+1) n + 2 + n + 9 + n +10 + n + 18 = 6n+40

6n + 40 will work with any number in this 9 × 9 grid and with any 3 step stairshape.

The difference between a 10× 10 grid and a 9 × 9 is that to find a total of 3 step stair in a 10× 10 grid is that the formula is different 6n +44 from a 9 × 9 grid which is 6n + 40 this is the result of my investigation.

I am going to investigate the further relationship between the stair totals and other step stairs on an other number grid. For this I am going to use 8× 8 and a 3 step stair shape.

image20.png

Grid: 8 Steps: 3 @41 41+42+43+49+50+57 = 282

image21.png

Grid: 8 Steps: 3 @44 44+45+46+52+53+60 = 300

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Number Grid Aim: The aim of this investigation is to formulate an algebraic equation ...

    3 star(s)

    131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

  2. Number Grids Investigation Coursework

    132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 There is a 2 x 2 square highlighted.

  1. GCSE Maths Sequences Coursework

    Stage (N) 1 2 3 Sequence 3 6 9 1st difference +3 +3 2nd difference Shaded I can see a clear pattern here, the sequence for shaded is going up regularly in 3's, and therefore this sequence is a linear sequence and has an Nth term. Nth term = 3N+?

  2. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    x-9 X X+1 X+2 X+3 For example if x = 34 then the square above would be x - 11 = 12 (34 - 11 = 23) and so on, Using the algebra equation and adding the values we get -100 12 x 12 Grid 1 2 3 4 5

  1. What the 'L' - L shape investigation.

    Using this information I can predict the formulas for a 6 by 6, 7 by 7 and 8 by 8 grid. Grid Size Algebraic L-Shape Formula 6 by 6 L-12 L-6 L L+1 L+2 5L - 15 7 by 7 L-14 L-7 L L+1 L+2 5L - 18 8 by

  2. Number Stairs

    8 1+2+3+4+5+6+7+8+11+12+13+14+15+16+17+21+22+23+24+25+26+31+32+33+34+35+41+42+43+44+51+52+ 53+61+62+71=960 The Stair Total of this 8-Step Stair is 960 Using the formula= x(s(s+1))

  1. Number Grid Coursework

    A graph is a good choice to show this relationship however, a straight line drawn between these would not be correct because with this particular problem, the values to be inputted into equations must be natural numbers i.e. Integers > 0.

  2. Algebra Investigation - Grid Square and Cube Relationships

    n n+1 n+10 n+11 n+20 n+21 n+30 n+31 Stage A: Top left number x Bottom right number = n(n+31) = n2+31n Stage B: Bottom left number x Top right number = (n+30)(n+1)= n2+1n+30n+30 = n2+31n+30 Stage B - Stage A: (n2+31n+30)-(n2+31n)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work