• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27
  28. 28
    28
  29. 29
    29
  30. 30
    30
  31. 31
    31
  32. 32
    32
  33. 33
    33
  • Level: GCSE
  • Subject: Maths
  • Word count: 3591

Stair Totals coursework

Extracts from this document...

Introduction

Awais Muhammad                                                                    Maths Coursework

Stair Totals

Aim: To work out the link between the stair total and the Stair number.

In this coursework I will look at the relationship between the stair total and the position of a 3 step stair on an n x n grid.  I also must investigate further the relationship between the stair totals and the stairs on other grid size.

10 by 10 Grid

Below is an example of a 10 by 10 grid

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

Below is the sample of a 3 step stair extracted from the 10x10 grid

image00.pngimage01.png

image03.pngimage04.pngimage02.png

image05.png

Stair total= 32+33+34+42+43+52

Stair total= 236

In order to save time in my coursework by not writing lots of words, and to help find the formula later on I will use algebra

Let T= Stair total

Let n= Stair number

So by looking at the above diagram I can say that my T value is 236 and my n value is 32.

I will begin by examining the number stairs beginning with n = 1. The reason why I am going to do this is because of the following;

  • It is simple and easy to work with
  • It is logical
  • It will help find the nth term later because I will be starting at the position n=1

Analysis

image06.png

                                                n= 1image07.pngimage08.pngimage09.png

                                                T= 1+ 2+ 3+ 11+ 12+ 21

                                                T= 50

                                                 n= 2

                                                 T= 2+ 3+ 4+ 12+ 13+ 22

                                                 T= 56

                                                 n= 3

                                                 T= 3+ 4+ 5+ 13+ 14+ 23

                                                 T= 62

                                                 n= 4

                                                 T= 4+ 5+ 6+ 14+ 15+ 24

                                                 T= 68

                                                 n= 5

                                                 T= 5+ 6+ 7+ 15+ 16+ 25

                                                 T= 74

I will now draw a table because it is at a

...read more.

Middle

60

66

        + 6      + 6      + 6     + 6

Observations

From the table I have noticed a few trends which are as follows;

  1. All the stair Totals(T) are even numbers
  2. The stair Totals(T) increase by 6 each time

Finding the nth term

T= 6n +  

From the table I can say that When n= 5, T must be 66

                  T= 6 x 5+                  

                    66= 30+         This means that

                    66- 30=

                          36=

Testing the formula

Looking at my table when n= 2, T must = 48

I can now use my formula which I have just found to check if it is correct

                          T= 6(2) + 36

                          T= 12 + 36

                          T=48

This shows that my formula works

Proving my formula

I have noticed that on my number stairs, as you go across the number increases by 1 and as you go up the number increases by 8.  I will now illustrate this below.

           +8          

          +8

        +1         +1

I'll now do the same thing using algebra.

        + 1

T= n+ (n+ 1) + (n+ 2) + (n+ 8) + (n+ 9) + (n+ 16)

T= 6n+ 36

Relationship between stair totals

I will now find the link between the stair totals only for 3 step stairs.   I will also look for the relationship between the stair totals and the grid size.

I will now draw a table because it is at a glance data, which means that it is quick and easy to look at because the data is grouped together, and furthermore it will help me to look for patterns in the data.

         Prediction

Grid Size (G)

Stair Total (T)

Pattern

Observation

7 by 7

_ _ _ _ _ __ _ _ _ _  

8 by 8

6n + 32

_ _ _ _ _ __ _ + 4_  

6n + 36    

6n+ (7 x 4)+ 4

_ _ _ _ _ __ _ _ _ _

6n + (8 x 4)+ 4

  • The 1st term is always 6N
  • The 2nd term is always the grid size x 4
  • The 3rd term is always + 4
...read more.

Conclusion

34

26

27

18

19

20

10

11

12

13

2

3

4

5

6

T= 2 + 3 + 4 + 5 + 6 + 10 + 11 + 12 + 13 + 18 + 19 + 20 + 26 + 27 + 34

T= 210

Now that I have completed my coursework, I will outline the formulas that I have found during this coursework, and what it does.

Formula _                             What it does

      T= 6n + 44                                                        Formula for any 3 step stair            

           on a 10 by 10 grid

      T= 6n + 40        Formula for any 3 step stair

         on a 9 by 9 grid

      T= 6n + 36                                                         Formula for any 3 step stair

             On a 8 by 8 grid

      T= 6n + 32                                                         Formula for any 3 step stair

             On a 7 by 7 grid

      T= n                                                                   Formula for any 1 step stair

        On any grid size

      T= 3n + G + 1        Formula for any 2 step stair

        On any grid size

      T= 6n + 4G + 4        Formula for any 3 step stair

        On any grid size

      T= 10n + 10G + 10        Formula for any 4 step stair

        On any grid size

      T= 15n + 20G + 20                                            Formula for any 5 step stair

                                                                                         On any grid size

       T= 21n + 35G + 35        Formula for any 6 step stair

        On any grid size

1   x ( x + 1)          Formula for triangular  

       2        numbers

T= (Triangular number) n +         Word Formula for any

(sum of triangular numbers but 1 below stair size)G           stair size on any grid size

+ (Sum of triangular numbers but 1 below stair size)

T= ( 1x(x + 1))n +(Σ triangular numbers less 1)G           Improved word and algebraic

+ (Σ triangular numbers less 1)        formula for any stair size

       2        on any grid size

                               x-1x-1

T= ( x ( x + 1) ) n + (Σ    x (x+1) ) G +  (Σ    x (x+1) )           Algebraic formula for

      2x=12x=1any stair size on any grid

size

T= (x(x+1)) n + (Σ1(x2-1)) G + 1x(x2-1)        An improved algebraic

           2               6                  6                                     formula for any grid

                                                                                       size on any stair size

...read more.

This student written piece of work is one of many that can be found in our GCSE Miscellaneous section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Miscellaneous essays

  1. Marked by a teacher

    Frogs Investigation - look at your results and try to find a formula which ...

    right Step 21-A1 hops to the right Step 22-B3 slides to the left Step 23-B4 Hops to the left Step 24-A1 slides to the right Conclusion: Number of hops=16 Number of slides=8 Total number of moves=24 Now look at your

  2. GCSE module 5 AQA Mathematics

    - x= n (n+11) =10 2 x 3 boxes: y= n + 10(n+2) - x= n (n+12) = 20 2 x 4 boxes: y= n + 10(n+3) - x= n (n+13) = 30 These equations are all very similar so I want to work out if there is a formula for which to devise them.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work