• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  • Level: GCSE
  • Subject: Maths
  • Word count: 3714

T-Shape Investigation.

Extracts from this document...

Introduction

Nathaniel Cummings 10A Math Coursework Mrs. Young

T-Shape Investigation

Introduction

I was told to make a graph which was 6 by 3 grids like this:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Then I had to put in a T-shape

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

From using the T-shapes I have to translate (slide) the T-shape to different positions on the grid. I then have to investigate the relationship between the t-number and T-total. By translating the T-shape I should be able to find a rule to predict the T-total.

The T-total is the numbers in the T-shape added up. In this case it is 1+2+3+8+14=28

A T-Shape is the shape which is made out the numbers in the grid.

The T-Number is at the bottom of each T-Shape. In this case the T-Number is 8.

To try to find a rule I am going to “Break down this problem”. I am going to draw a 5 by 3 grid the 6 by 3 and then a 7 by 3 grid.  This will help me to see if there are any patterns which are the same between the grids if there are changed.  For each grid I make I will translate the T-Shape to also see if there is any patterns.

5 by 3 grid

1

2

3

4

5

 6

7

8

9

10

11

12

13

14

15

My first grid is a 5 by 3 grid. I have placed two T-shapes inside this grid. I am going to see I can find any patterns which are the same in these T-shapes.

I am going to see if I can see any patterns which are the same from looking at the T-Totals and the T-Numbers

The first T-shape (blue outline) T- Total is 1+2+3+7+12 = 25

 The T- Number of this T-shape is 12

...read more.

Middle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

5 * 65 – 7*10= 255

I will add up the numbers in the T- Total to prove that my rule is correct.

44+45+46+55+65= 225

My rule is correct!

First Extension

Moving the T-Shape 90 degrees to the right

Here I have moved my T-Shape 90 degrees to the right. I am going to investigate this T-Shape in the same why I did the last.

5 by 3 grid

1

2

3

4

5

 6

7

8

9

10

11

12

13

14

15

My first position is in blue. The T- Number is 6. The T- Numbers will be in this place. This is the same as the last T-Shapes.

The first T-shape (blue outline) T- Total is 6+7+8+3+13 = 37

The T- Number of this T-shape is 6

The second T-shape (red outline) T- Total is 7+8+9+4+14 = 42

The T- Number of this T-shape is 7

The third T-shape (brown outline) T- Total is 8+9+10+5+15 = 47

The T- Number of this T-shape is 8

I am now going to make a table to put these results in a table to make it easier to read.

T- Number

T- Total

First position

6

37

Second position

7

42

Third position

8

47

Here again I see that the T- Total is going up in 5. This is for the same reason as I stated before.

There is 5 numbers in each T-Shape so if you move the T-shape over each individual number is in creased by 1.  Equaling 5 * 1    

E.g. 6 changes to 7

       7 changes to 8 etc

With the information that I poses from my last investigation I feel no need to write out the 6 by 3 grid and the 7 by 3 grid. I know what is going to happen.

So I am going find the rule for this T-Shape.

...read more.

Conclusion

This is the T-Total will always go up in 5 if you move it to the right.

I am now going to try to find a method the same way I have done before.

I am going to break down the T- Shape in an algebraic expression to find the method.

1

2

3

7

8

9

13

14

15

Here is what it looks like as an algebraic expression

1

T

3

7

T+G

9

T+2G - 1

T+2G

 T-2G + 1

T = the T- Number

T+(T+G)+(T+2G)+(T+2G-1)+(T+2G+1) = 5T+7G

T = the T- Number

By adding together the method of obtaining the numbers in the T- Shape from the T- Number I found the method for finding the T- Total by just using the number of columns in the grid and the T- Number!

I will now prove that this rule works using a 10 by 10 grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

5*25+7*10= 195

I will add up the numbers in the T- Shape to make sure my answer is correct.

25+35+45+44+46= 195


This rule is correct.

This is how it works.

You get the 5 multiplied by the T-Number by getting 5 numbers in the T- Shape.  By applying the 5n rule to this you get 5T.

For the row with the T-number in it the row equals 0

The next row up equals +1G because you have to subtract the grid size to get the T-Number

The last row from the T-Number is +2G because this is what you have to get the T-Number from this point.  

When you add +1G and the three +2Gs you get +7G

This rule is the opposite of the first investigation because it is in the opposite direction to the original T- Shape.

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-total Investigation

    - 7G To prove that I am correct I will test it out with a 5by5 grid. This is my working out: 1 2 3 7 T-no 12 (5 x 12) - (7 x 5) = 25 60 - 35 = 25 I added all the numbers inside the T

  2. T-totals. I am going to investigate the relationship between the t-total, T, and ...

    Translate and rotate 90� clockwise n T T = 5 { n + (c - a) (1-g) - (d - b) (g+1) + a - bg } + 7 a b c d 2 2 1 1 61 322 5 { 61 + (-1)(-10)

  1. Objectives Investigate the relationship between ...

    position, to a 180� position, I would be able to find its T-total by simply adding '(63+49)' to its current T-total. This is my prediction I will now prove my prediction. Rotating 180� I will now rotate the T-shape, T23 in 180.

  2. T-shapes. In this project we have found out many ways in which to ...

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    + ( 2 x 5 ) 25 (55 - 30) 8 30 t = (5 x 8) + ( 2 x 5 ) N/a MAKE A TABLE and LOOK FOR PATTERNS - TRY TO FIND A RULE From this we can see that 25 is the "magic" number for vertical translations by +1 on a grid

  2. T-Totals. We have a grid nine by nine with the numbers starting from 1 ...

    21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  1. Maths Coursework T-Totals

    you have the 2 variables of a T-Number and a grid size for T shapes that extends upwards, using the formula t = 5x - 7g. Another area that we can investigate is that of differing grid such as 4x7 and 6x5 will make a difference to this formula.

  2. We have a grid nine by nine with the numbers starting from 1 to ...

    The formula starts with 5* the t-number this is because there is a rise in the t-total by 5 for every t-number. We then -63 which do by working out the difference between the t-number and another number in the t-shape.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work