• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  • Level: GCSE
  • Subject: Maths
  • Word count: 4144

T-shapes. In this project we have found out many ways in which to solve the problem we have with the t-shape being in various different positions with different sizes of grids.

Extracts from this document...

Introduction

T-Total and T-Number

PART 1

We have a grid nine by nine with the numbers starting from 1 to 81. There is a shape in the grid called the t-shape. This is highlighted in the colour red. This is shown below: -

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

The number 20 at the bottom of the t-shape will be called the t-number. All the numbers highlighted will be called the t-total. In this section there is an investigation between the t-total and the t-number.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

For this t-shape the

T-number is 20

And the

T-total is37

For this t-shape the

T-number is 21

and the

T-total is 42

As you can see from this information is that every time the t-number goes up one the t-total goes up five.

Therefore the ratio between the t-number and the t-total is 1:5

This helps us because when we want to translate a t-shape to another position. Say we move it to here

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

We all ready know the answer to the one in red. To work out the one in green all we have to do is work out the difference in the t-number and in this case it is 54. We then times the 54 by 5 because it rises 5 ever time the t- number goes up.

...read more.

Middle

9

10

11

12

13

14

15

16

T-number = 10

T-total = 1+2+3+6+10= 22

7 * 4 (grid size) = 28

5tn- 28= t-total

5*10-28=22

This has proven to work on a smaller scale. We can see that by changing the grid size we have had to change the formula but still managing to keep to the rule of how you get the number to minus in the formula.

PART 3

In this next section there is change in the size of grid. Also there is transformations and combinations of transformations. The investigation of the relationship between the t-total, the t-numbers, the grid size and the transformations.

            If we turned the t- shape around 180 degrees it would look like this. When we have done this we should realise if we reverse the t-shape we should have to reverse something in the formula.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

 It is obvious that we will have to change the minus sign to a different sign. We should try the opposite of minus which is plus

5tn + 63=t-total

5 * 2 + 63 = 73

Check to see if the formula has worked

T-number = 2

T-total = 2+11+19+20+21 =73

The reverse in the minus sign has worked. 

The next step is to move the shape on its side. Again we nearly keep the same formula as we had at the beginning. Again we change the minus number. We can work out the number to minus by working out the difference in the t-number to each number in the t-shape.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Difference

12-1 =11

12-10= 2

12-19= -7

12-11 = 1

TOTAL = 7

Formula

5tn - 7 =t-total

5*12 - 7= 53

Check to see if the formula is right

T-number = 12

T-total = 1 +10 +19 +11 +12 = 53

This formula has worked. If we rotated the t-shape 180 degrees, The same will happen, as what happened when the t-shape was turned 180 degrees from it is first original position. This is proven below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

5tn + 7 = t-total

5* 70 + 7 = 357

Check

T-number = 70

T-total = 70+71+72+63+81 = 357

If we were to put the t-shape diagonally on the grid we find that the same rule applies again apart from you can not use the 2nd rule were you times the grid size by seven.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

The red t-shape has t-number of 33 and the t-total = 7+17+27+25+33 = 109

The difference between the t-number and the rest of the numbers in the t-shape.

33-25= 8

33-7= 26

33-17= 16

33- 27 = 6

TOTAL= 56

5tn+56= t-total

5 * 33 - 56 =109

The reverse triangle the sign should be reversed to a plus. The t-shape used here is the one in blue.

T-number is 13

T-total = 19+29+39+21+13 = 121

5tn+56= t-total

5*13+ 56= 121

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

The t-shapes above holds more formulas as the rest they all work the same.

The red t-shape has a t-number of 32 and a t-total of 32+42+52+60+44= 230

This t-shape has a formula the formula is 5tn + 70 = t-total

To see if this formula works

First we work out the difference in between the t-number and the rest of the numbers in the t-shape.

Difference

42-32= 10

52-32= 20

60-32= 28

44-32= 12

TOTAL= 70

5*32 + 70 = 230

The blue shape is the opposite of the red t-shape so therefore the formula for the blue t-shape is 5tn – 70 = t-total. The sign has become the opposite of what it use to be. This has happened in many cases before.

Now that we have worked out all the formulas for the position in the normal sized t-shape. We can try enlarging the t-shape. If we double the t-shape (volume is four times bigger). The grid below shows the new shape. I have added all the numbers together in the squares of the t-shape. This leaves us with our original t-shape but with larger numbers in the grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

The t-number turns out to be 176. This is the bottom four numbers added together. The t-total is 356. I have worked out the differences between the t-number and the rest of the t-shape.

Difference

176-24 = 153

176-32 = 144

176-40 = 136

176-84 = 92

TOTAL= 524

Now we have the rest of the formula. The formula is very much the same apart from the number we minus or plus by is vaster.

Formula

5tn – 524 = t-total

5*176-524 = 356

Formula has proven to work.

We have seen that there is a relationship with all the transformations made to the t-shape. Everything that we have done the t-shape has seemed to link to the part that was discovered before. These still stays the same apart from we add an extra part on to the end of the formula. This is because we are not looking for a link between all the positions of the t-shape when it is a certain way up. Here we want to find out whether there is a link between only two t-shapes. Here first of all we are looking for a link when we rotate this t-shape 90 degrees.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

...read more.

Conclusion

This formula should be tested. The t-total of the blue t-shape is 37 and the t-total of the red t-shape is 208.

Formula

5tn+(12*gridsize)= t-total

5*20+ 12* 9 = 208

The formula has worked.

CONCLUSION

 In this project we have found out many ways in which to solve the problem we have with the t-shape being in various different positions with different sizes of grids. The way we have made the calculations less difficult is by creating a main formula that changes for all the different circumstances.

Here I have put all the formulas I have come up with. These formulas only apply to the nine by nine grids

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn-63= t-total     D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn+63 = t-total     U

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn-7= t-total      R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn+7= t-total     L

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn-70= t-total     DR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn+70 = t-total     UL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn-56= t-total     DL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5tn+56 = t-total     UR

The different size of grid changes means the formula has to change slightly.

This is what happened.

T-shapes

 number to x by 7

D & U

Grid size

L & R

nothing

DL & UR

Grid size  -1

DR & UL

Grid size +1

 We also have formula for rotation, which are

angle

formula

45 degrees

5tn-(7xG)+7= t-total

90 degrees

5tn-(7xG)+70= t-total

135 degrees

5tn-(7xG)+133= t-total

180 degrees

5tn-(7xG)+126 = t-total

225 degrees

5tn-(7xG)+119= t-total

270 degrees

5tn-(7xG)+56 = t-total

315 degrees

5tn-(7xG)-7= t-total

We have a formula for reflection which is 5tn+(12*gridsize)= t-total.

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. How many arrangements for 2 counters in a line, in grids of various sizes ...

    x (10-1) = 81 + (10-1) x (10-1) = 162 10x10 horizontal and vertical (10-1) x10 = 90 + (10-1)

  2. The T-Total Mathematics Coursework Task.

    that: On a 9 by 9 grid any T-Total can be found using T = 5t + 63 were t is the T-Number. We can also say that on a 9 by 9 grid that: * A translation of 1 square to the right for the T-Number leads to a T-total of -5 of the original position.

  1. T-Shapes Coursework

    51 52 53 54 55 56 57 58 59 60 61 62 63 64 The table above shows our T-Shape being rotated 180�. T-Number of rotated T-Shape: 36 T-Total of rotated T-Shape: 36 + 44 + 51 + 52 + 53 = 236 So let us try the general formula we have just discovered: Tt =5 x 36 + 7(8)

  2. T-totals, Main objective of this project of T-totals coursework is to find an inter-relationship ...

    80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 T-number: T:total: 30

  1. T-Shapes Coursework

    The last number in the sequence can be found using Pattern 2 again, and hence it is n + 10l. This is because the length of the tail denotes where the last number in the sequence can be found. And so now, if we "sum the first and last numbers

  2. T-Total Investigation

    (14), as it's center of rotation, this shape a T-Total of 72. If we rotate our T-Shape by 180 and 270 degrees clockwise, again it will be easier for us to build up a profile, and some generalizations. 1 2 3 4 5 6 7 8 9 10 11 12

  1. Maths Coursework - T-Total

    (Highlighted red) I now have to find a formula for any size grid and a 90 degree clockwise/270 degree anti-clockwise rotation. I investigated the correlation between the +7 part of the formula and the grid width; I tested this theory and proved it using this t-formula-shape (in yellow).

  2. Maths Coursework:- T-Total

    If we multiply 3 by 5 we get 15 but I need a way of generalising this. Every square you move along the x-axis increases t by 1 so we need something to represent this. It shall be x. I will now see if placing this in the formula works.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work