• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  • Level: GCSE
  • Subject: Maths
  • Word count: 2735

T-Total Investigation

Extracts from this document...

Introduction

Daniel Hughes 4C        T-Total Investigation        28/04/07

T-Total Investigation

        I am going to look at and investigate the relationship between the T-total, R-number and grid size of a T-shape on a numbered grid.

  1. Investigate the relationship between the T-total and the T-number drawn on a 9 by 9 number grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

        There is a possibility of 196 different translations of T-shape on this grid.  I am going to investigate on this grid the T-shape shown above.

        Here is a table with T-totals from the grid above:

T-number

T-total

20

(20+11+1+2+3) 37

21

(21+12+2+3+4) 42

22

(22+13+3+4+5) 47

23

(23+14+4+5+6) 52

24

(24+15+5+6+7) 57

        To find a relationship between the T-total and T-number I used the difference method.

T-TotalT-numberDifference

20                37                5        

21                42                5

22                47                5

23                52                5

24                57                

T = T-total

        The reason why the difference increases by 5 each time, is because there is 5 numbers in the T.  As the T moves across the each number increases by one.  Five times each one equals 5.

T = 5n – X

   = (5 x 20) - X = 100 – X = 37

   = 63

So, 5n – 63 is the formula to work out the t-total for this grid.

Eg.        Formula = 5n – 63

                  = (5x24) - 63

                  = 120 – 63

                  = 57

24 + 15 + 5 + 6 + 7 = 57

        Formula = 5n – 63

                  = (5x50) – 63

                  = 250 – 63

                  = 187

50 + 41 + 31 + 32 + 33 = 187

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

        The T though can be translated to different positions.

Eg.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

        In different positions though the formula does not work.

Eg.                = 5n – 63

                = (5x4) – 63

                = 20 – 63

                = -43

...read more.

Middle

                  = 285 + 7

                  = 292

57 + 58 + 59 + 50 + 68 = 292

        I predict to work out the reverse of the sideways T in the opposite direction, you have to change the formula to 7 from –7.

Eg.        Formula = 5n – 7

                  = (5x12) – 7

                  = 60 – 7

                  = 53

12 + 11 + 10 + 1 + 19 = 53

         Formula = 5n –7

                  = (5x16) –7

                  = 80 – 7

                  = 73

16 + 15 + 14 + 5 + 23 = 73

        Formula = 5n – 7

                  = (5x68) – 7

                  = 340 – 7

                  = 333

68 + 67 + 66 + 57 + 75 = 333

  1. Uses grids of different sizes.  Translate the T– shape to different positions.  Investigate relationships between the T-total, the T-numbers and the grid size.

Here is a grid 3 by 3:

1

2

3

4

5

6

7

8

9

        I am going to concentrate on the original translation of the T.  The T-total of 8 in this grid is 19.  Adding another column (to make it 3 by 4) will give me two T’s to do the difference method with.

1

2

3

4

5

6

7

8

9

10

11

12

T-numberT-total        Difference

10                22                5n

11                27                5n

        5n = (5x10)

             = 50 –22 = 28

                        = 5n – 28

Eg.        Formula = 5n – 28

                  = (5x11) – 28

                  = 55 – 28

                  = 27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T-numberT-total        Difference

12                25                5n

13                30                5n

14                35                5n

        The difference between the T-totals is always 5n.

        5n – x = (5x12) – x

                   = 60 – x

              25 = 60 – x

                x = 35

                   = 5n – 35

Eg.        Formula = 5n –35

                  = (5x14) – 35

                  = 70 – 35

                  = 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

T-numberT-totalDifference

14                28                5n

15                33                5n

16                38                5n

17                43                5n

        It is 5n again.

5n – X = (14x5) –X

        = 70 – X

       28 = 70 – X

        X = 42

        = 5n – 42

Eg. Formula = 5n – 42

                 = (5x17) – 42

                 = 85 – 42

                 = 43

I noticed a pattern in the formulas.

3x4        5n – 28        7

3x5        5n – 35        7

3x6        5n - 42         7

        The difference between the number you take away increases by 7 every time.

...read more.

Conclusion

22 – 4 = 18x10 = 180

13 – 4 = 9x10 = 90

        What I was trying to do was to develop a formula from the first formula with 3 rows and T-number 4.  For example the number 90, + 33 = 123, which is the number taken away for the formula for T-number 13.  180 added to 33 is 213, which is the number taken away from 15n, for the T-number 22.  This has to be expressed into a formula, so here is.

15n – (10(n - 4) + 33)

        Formula = 15n – (10(n - 4) + 33)

                  = (15x7) – (10(7 – 4) + 33)

                  = 105 – (10x3 + 33)

                  = 105 (30 + 33)

                  = 105 – 63

                  = 42

7 + 8 + 9 + 6 _+ 12 = 42

        Formula = 15n – (10(n - 4) + 33)

                  = (15x13) – (10(13-4) + 33)

                  = 195 – (10x9 + 33)

                  = 195 – 123

                  = 72

13 + 14 + 15 + 12 + 18 = 72

        Formula = 15n – (10(n - 4) + 33)

                  = (15x22) – (10(22-4) + 33)

                  = 330 – (10x18 + 33)

                  = 330 – (180 + 33)

                  = 330 – 213

                  = 117

22 + 23 + 24 + 21 + 17 = 117

         As the formula doesn’t change when a column is added, this is the general formula for this sideways T.

Eg.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

        Formula = 15n – (10(n – 4) + 33)

                  = (15x7) – (10(7 - 4) + 33)

                  = 105 – (10x3 + 33)

                  = 105 – (30 + 33)

                  = 105 – 63

                  = 42

7 + 8 + 9 + 3 + 15 = 42

        Formula = 15n – (10(n – 4) + 33)

                  = (15x16) – (10(16 - 4) + 33)

                  = 240 – (10x12 + 33)

                  = 240 –153

                  = 87

16 + 17 + 18 + 12 + 24 = 87

        Formula = 15n – (10(n – 4) + 33)

                  = (15x27) – (10(27 - 4) + 33)

                  = 405 – (10x23 + 33)

                  = 405 – ( 230 + 33)

                  = 405 – 263

                  = 142

27 + 28 + 29 + 23 + 35 = 142

        I therefore predict if you reverse the T round the other way that the formula will be, 15n + (n + 4)-10 + 33).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

        Formula = 15n + (n + 4)-10 + 33)

                  = (15x9) + (9 + 4)-10 + 33)

                  = 135 + (13x-10 + 33)

                  = 135 + (-130 + 33)

                  = 135 – 97

                  = 38

9 + 8 + 7 + 1 + 13 = 38

        Formula = 15n + (n + 4)-10 + 33)

                  = (15x30) + (30 + 4)-10 + 33)

                  = 450 + (34x-10 + 33)

                  = 450 + (-340 + 33)

                  = 450 – 373

                  = 72

30 + 29 + 28 + 22 + 34 = 143

        Formula = 15n + (n + 4)-10 + 33)

                  = (15x22) + (22 + 4)-10 + 33)

                  = 330 + (26x-10 + 33)

                  = 330 + (-260 + 33)

                  = 330 – 227

                  = 103

22 + 21 +14 + 20 + 26 = 103

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-total Investigation

    test this formula on a 10by10 grid to see it works: Checking: (5 x 22) - (7 x 10) = 40 110 - 70 = 40 From 5t come 5 which is multiplied by the T-no from my first position which is 22.

  2. Connect 4 - Maths Investigation.

    Using the difference method to form an overall rule I multiply the difference (8) by the length and take away n to get the total for any connect. Premature rule: 8L - n For the 5 x 5: 8 x 5 - 28 Rule for Connect 5 with height 5:

  1. T-Total Investigation

    5x101), with the two variables of grid width (g) and the T-Number (x). Finding relationship between T-Number and T-Total, with different sized grid and different translation, enlargements and rotations of the T-Shape For this section we will have to keep some items constant, as for to provide a stable environment to prove of disprove theories based on translations, enlargements

  2. Objectives Investigate the relationship between ...

    37 +5 T21 42 +5 T22 47 +5 As you can see the T-totals of the 3 T-shapes are: 37, 42 and 47 As you can see they increase by the integer '+5' each time, they are translated to the right.

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  2. T totals - translations and rotations

    I have noticed that as I transform the T-shape horizontally my T-Total is increased by 5 I will test my theory by making a prediction on my T-Number 26. My prediction is that when my T-Number is 26 my T-Total will be 67.

  1. T-Totals (A*) Firstly I have chosen to look at the 9 by 9 grid. ...

    I did this by calling the t-number the nth term in each case and working out a formula from there, what I have done can be seen looking at the table below: T-number* 44 45 46 47 48 T-total 150 155 160 165 170 Difference +5 +5 +5 +5 *nth term Formula: 5n-70.

  2. Maths Coursework T-Totals

    for example, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 T = (5x16) - (2 x 6) T = 80 - 12 T = 68 In addition, the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work