• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  • Level: GCSE
  • Subject: Maths
  • Word count: 2735

T-Total Investigation

Extracts from this document...

Introduction

Daniel Hughes 4C        T-Total Investigation        28/04/07

T-Total Investigation

        I am going to look at and investigate the relationship between the T-total, R-number and grid size of a T-shape on a numbered grid.

  1. Investigate the relationship between the T-total and the T-number drawn on a 9 by 9 number grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

        There is a possibility of 196 different translations of T-shape on this grid.  I am going to investigate on this grid the T-shape shown above.

        Here is a table with T-totals from the grid above:

T-number

T-total

20

(20+11+1+2+3) 37

21

(21+12+2+3+4) 42

22

(22+13+3+4+5) 47

23

(23+14+4+5+6) 52

24

(24+15+5+6+7) 57

        To find a relationship between the T-total and T-number I used the difference method.

T-TotalT-numberDifference

20                37                5        

21                42                5

22                47                5

23                52                5

24                57                

T = T-total

        The reason why the difference increases by 5 each time, is because there is 5 numbers in the T.  As the T moves across the each number increases by one.  Five times each one equals 5.

T = 5n – X

   = (5 x 20) - X = 100 – X = 37

   = 63

So, 5n – 63 is the formula to work out the t-total for this grid.

Eg.        Formula = 5n – 63

                  = (5x24) - 63

                  = 120 – 63

                  = 57

24 + 15 + 5 + 6 + 7 = 57

        Formula = 5n – 63

                  = (5x50) – 63

                  = 250 – 63

                  = 187

50 + 41 + 31 + 32 + 33 = 187

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

        The T though can be translated to different positions.

Eg.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

        In different positions though the formula does not work.

Eg.                = 5n – 63

                = (5x4) – 63

                = 20 – 63

                = -43

...read more.

Middle

                  = 285 + 7

                  = 292

57 + 58 + 59 + 50 + 68 = 292

        I predict to work out the reverse of the sideways T in the opposite direction, you have to change the formula to 7 from –7.

Eg.        Formula = 5n – 7

                  = (5x12) – 7

                  = 60 – 7

                  = 53

12 + 11 + 10 + 1 + 19 = 53

         Formula = 5n –7

                  = (5x16) –7

                  = 80 – 7

                  = 73

16 + 15 + 14 + 5 + 23 = 73

        Formula = 5n – 7

                  = (5x68) – 7

                  = 340 – 7

                  = 333

68 + 67 + 66 + 57 + 75 = 333

  1. Uses grids of different sizes.  Translate the T– shape to different positions.  Investigate relationships between the T-total, the T-numbers and the grid size.

Here is a grid 3 by 3:

1

2

3

4

5

6

7

8

9

        I am going to concentrate on the original translation of the T.  The T-total of 8 in this grid is 19.  Adding another column (to make it 3 by 4) will give me two T’s to do the difference method with.

1

2

3

4

5

6

7

8

9

10

11

12

T-numberT-total        Difference

10                22                5n

11                27                5n

        5n = (5x10)

             = 50 –22 = 28

                        = 5n – 28

Eg.        Formula = 5n – 28

                  = (5x11) – 28

                  = 55 – 28

                  = 27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T-numberT-total        Difference

12                25                5n

13                30                5n

14                35                5n

        The difference between the T-totals is always 5n.

        5n – x = (5x12) – x

                   = 60 – x

              25 = 60 – x

                x = 35

                   = 5n – 35

Eg.        Formula = 5n –35

                  = (5x14) – 35

                  = 70 – 35

                  = 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

T-numberT-totalDifference

14                28                5n

15                33                5n

16                38                5n

17                43                5n

        It is 5n again.

5n – X = (14x5) –X

        = 70 – X

       28 = 70 – X

        X = 42

        = 5n – 42

Eg. Formula = 5n – 42

                 = (5x17) – 42

                 = 85 – 42

                 = 43

I noticed a pattern in the formulas.

3x4        5n – 28        7

3x5        5n – 35        7

3x6        5n - 42         7

        The difference between the number you take away increases by 7 every time.

...read more.

Conclusion

22 – 4 = 18x10 = 180

13 – 4 = 9x10 = 90

        What I was trying to do was to develop a formula from the first formula with 3 rows and T-number 4.  For example the number 90, + 33 = 123, which is the number taken away for the formula for T-number 13.  180 added to 33 is 213, which is the number taken away from 15n, for the T-number 22.  This has to be expressed into a formula, so here is.

15n – (10(n - 4) + 33)

        Formula = 15n – (10(n - 4) + 33)

                  = (15x7) – (10(7 – 4) + 33)

                  = 105 – (10x3 + 33)

                  = 105 (30 + 33)

                  = 105 – 63

                  = 42

7 + 8 + 9 + 6 _+ 12 = 42

        Formula = 15n – (10(n - 4) + 33)

                  = (15x13) – (10(13-4) + 33)

                  = 195 – (10x9 + 33)

                  = 195 – 123

                  = 72

13 + 14 + 15 + 12 + 18 = 72

        Formula = 15n – (10(n - 4) + 33)

                  = (15x22) – (10(22-4) + 33)

                  = 330 – (10x18 + 33)

                  = 330 – (180 + 33)

                  = 330 – 213

                  = 117

22 + 23 + 24 + 21 + 17 = 117

         As the formula doesn’t change when a column is added, this is the general formula for this sideways T.

Eg.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

        Formula = 15n – (10(n – 4) + 33)

                  = (15x7) – (10(7 - 4) + 33)

                  = 105 – (10x3 + 33)

                  = 105 – (30 + 33)

                  = 105 – 63

                  = 42

7 + 8 + 9 + 3 + 15 = 42

        Formula = 15n – (10(n – 4) + 33)

                  = (15x16) – (10(16 - 4) + 33)

                  = 240 – (10x12 + 33)

                  = 240 –153

                  = 87

16 + 17 + 18 + 12 + 24 = 87

        Formula = 15n – (10(n – 4) + 33)

                  = (15x27) – (10(27 - 4) + 33)

                  = 405 – (10x23 + 33)

                  = 405 – ( 230 + 33)

                  = 405 – 263

                  = 142

27 + 28 + 29 + 23 + 35 = 142

        I therefore predict if you reverse the T round the other way that the formula will be, 15n + (n + 4)-10 + 33).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

        Formula = 15n + (n + 4)-10 + 33)

                  = (15x9) + (9 + 4)-10 + 33)

                  = 135 + (13x-10 + 33)

                  = 135 + (-130 + 33)

                  = 135 – 97

                  = 38

9 + 8 + 7 + 1 + 13 = 38

        Formula = 15n + (n + 4)-10 + 33)

                  = (15x30) + (30 + 4)-10 + 33)

                  = 450 + (34x-10 + 33)

                  = 450 + (-340 + 33)

                  = 450 – 373

                  = 72

30 + 29 + 28 + 22 + 34 = 143

        Formula = 15n + (n + 4)-10 + 33)

                  = (15x22) + (22 + 4)-10 + 33)

                  = 330 + (26x-10 + 33)

                  = 330 + (-260 + 33)

                  = 330 – 227

                  = 103

22 + 21 +14 + 20 + 26 = 103

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-Total Investigation

    same as the 4x4 grid as it has a "magic number" of 28, identical to a 4x4 grid, we can predict that grid width is the only important variable, but we will need to prove this. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

  2. Objectives Investigate the relationship between ...

    formula is better as it doesn't require an established T-total to be worked out, all I need is the T-number of the T-shape and I will be able to work it out, * T19 9 10 11 17 18 19 25 26 27 * Tn n-10 10 11 n-2 n-1

  1. In this section there is an investigation between the t-total and the t-number.

    101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 T-total = 1+2+3+13+24 = 43 T-number = 24 The t-total and the t-number have risen even though the t-shape looks to be in the same place.

  2. T totals. In this investigation I aim to find out relationships between grid sizes ...

    Straight away, we can generalize that, When a T-Shape is translated vertically by a positive figure its T-Total is less than the original T-Total If we table these results along with all the vertical translation results from 41 to 14 (for v), we should easily see a pattern (on a

  1. T-total Investigation

    47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 3by2 T on the beginning of the grid. I moved the T along 3 times in order to find a pattern. These are the 3 different positions in which I placed my

  2. T totals - translations and rotations

    74 75 76 78 79 80 81 82 Horizontal translation My T number is 22 as you can see on my 9by9 grid and I will also representing this as N in my equation. My T total is 22+13+4+3+5= 47.

  1. Maths Coursework T-Totals

    42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 If we take this 8x8 grid with a T-Number of 36 we get the T-Total of 124 (36 + 28 + 20 + 19 + 21), if

  2. Maths- T-Totals

    T-Number T-Total Trend of T-Number Trend of T-Total 20 1+2+3+11+20= 37 +10 +50 30 11+12+13+21+30= 87 +10 +50 40 21+22+23+31+40= 137 +10 +50 50 31+32+33+41+50= 187 +10 +50 60 41+42+43+51+60= 237 +10 +50 70 51+52+53+61+70= 287 +10 +50 80 61+62+63+71+80= 337 +10 +50 Formula Expressed in the nth term As

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work