• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

T-Totals. I am going to investigate T-totals in relation to the T-number on different sized grids. I am then going to investigate the relationship between the T-total of a T-shape in 1 area of a grid to when it is translated, using any vector, to another

Extracts from this document...

Introduction

For this Piece of coursework I am going to investigate T-totals in relation to the T-number on different sized grids. I am then going to investigate the relationship between the T-total of a T-shape in 1 area of a grid to when it is translated, using any vector, to another area of the grid. 7 8 9 13 18 A T-shape consists of five numbers, when added together theses numbers create the T-total. The T-number is the number at the bottom of the T-shape. E.G. - The T-total for this shape would be 7+8+9+13+18 = 55 - The T-number for this shape would be 18 Throughout this Coursework I will refer to the T-total as 'T' and the T-number as 'N'. I started by investigating the relationships on a 5x5 grid, making sure I worked in a systematic way in order to make it easier to compare the results and discover a comparison. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 T-number (n) T-Total (T) 12 25 13 30 14 35 I can see from the table that as N increases by 1, T increases by 5, using this information I can begin to create a formula. ...read more.

Middle

I then worked out the formula for a 8x8 grid using the same process. T-number (n) T-Total (T) 18 34 19 39 20 44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 I can see from the table that, like on the other grid, as N increases by 1, T increases by 5. So I know that the beginning of the formula is the same. 18(n) x 5 = 90 90 - 34(T) = 56 So, T = 5n - 56 Proof I created the T-shape, for this grid, below in order to prove my formula. N-17 N-16 N-15 N-8 N So, T = n-13+n-12+n-11+n-6+n T = 5n - 42 Therefore, according to this T-shape my formula is correct. I then worked out the formula for a 9x9 grid using the same process. T-number (n) T-Total (T) 20 37 21 42 22 47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...read more.

Conclusion

I will use a 10x10 grid and experiment with different vectors to see if there is a pattern. H amount moved horizontally V amount moved vertically N-2G+1 N-2G N-2G-1 N-G N N-2G+1 +h N-2G+h N-2G-1+h N-G+h N+h Original T-shape T-shape moved right H So,T-total = n-2g+1+h+n-2g+h+n-2g-1+h+n-g+h+n+h = 5N - 7G + 5H N-2G+1 N-2G N-2G-1 N-G N N-2G+1 -Gv N-2G-Gv N-2G-1-Gv N-G-Gv N-Gv Original T-shape T-shape moved up V So,T-total = n-2g+1-gv+n-2g-gv+n-2g-1-gv+n-n-g-gv+n-gv = 5N - 7G + 5GV These can be proven by checking it within the grid below. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 34 44 45 46 47 48 49 50 51 52 35 54 55 56 57 58 59 60 61 62 36 64 65 66 67 68 69 70 71 72 37 74 75 76 77 78 79 80 81 82 38 84 85 86 87 88 89 90 91 92 39 94 95 96 97 98 99 100 N-2G+1 +1 N-2G+1 N-2G-1+1 N-G+1 N+1 N-2G+1 -10 N-2G-10 N-2G-1-10 N-G-10 N-10 T-shape moved right 1 T-shape moved up 1 In conclusion I have found that the T-total of a vector H is V T = 5N - 7G + 5H - GV ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T Total and T Number Coursework

    51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  2. The T-Total Mathematics Coursework Task.

    factorised we can create the formula: L-Total = 5 x L-Number + 58 L = 5l + 58 This equation is used to work out any L-shape that has been rotated 180 degrees clockwise on a 9 by 9 number grid.

  1. T-Shapes Coursework

    = 180 + 56 Tt = 256 270� Clockwise 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

  2. To prove that out of town shopping is becoming increasingly popular with shoppers, and ...

    in- 84 Difference: + 53 Going out- 31 3:30-45 pm: Going in: 81 Difference: + 52 Going out: 29 Average: Going in- 81 Difference: + 54 Going out- 27 The traffic too and from the shopping centre was quite busy as the count was conducted on a Saturday which is always busy.

  1. Given a 10 x 10 table, and a 3 steps stair case, I tried ...

    Once I found these two formulae I made a set of predicted results. Example of staircase moving up: Bottom left number of staircase = 45 Row number: 60n - 10 = 341 Total sum = 6n + 44 60n = 354 = (6 x 45)

  2. T-totals. I am going to investigate the relationship between the t-total, T, and ...

    to every cell. The t-number, n, thus becomes n + a. n-2g-1-bg n-2g-bg n-2g+1-bg n-g-bg n-bg b Translating the t-shape vertically by the vector will add (-bg) to every cell. The t-number, n , thus becomes n - bg. n-2g-1+a-bg n-2g+a-bg n-2g+1+a-bg n-g+a-bg n+a-bg b a As +=, translating the t-shape by the vector will add (a - bg)

  1. Objectives Investigate the relationship between ...

    Rotating 90� I will rotate the T-shape in a 90� direction, and see if I can find a formula to find the T-total of rotated T-shapes. 2 3 4 5 10 11 12 13 18 19 20 21 26 27 28 29 I will be rotating T19 in a 90�

  2. T-Shapes Coursework

    48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work