• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Area Under A Curve

Extracts from this document...


Juri Gregurec

Maths Coursework

The Area Under A Curve

My aim is to find the area under a curve on a graph that goes from –10 to 10 along the x axis and from 0 to 100 on the y axis. The curve will be the result of the line y=x . I will attempt several methods and improve on them to see which one gives the most accurate answer. The graph I am using looks like this: -

Counting Squares Method

The first method I will use to find the area is the counting squares method. For this method I will draw the graph on cm paper and estimate the amount of squares that the area under the curve takes up. To do this I will first count all the whole squares, and then count all the half squares and divide that number by two to give a rough estimate of the area under the curve.

Altogether I counted 10 whole squares and 14 half squares. When the half squares were divided by 2, the total number of squares was 17 squares.

...read more.


This method is still not entirely accurate but gives a more accurate value for the area under the curve than the counting squares method.

Counting Trapeziums

The method I have chosen to use now will increase the accuracy even more by splitting the curve up into trapeziums. I will split the curve up into 3 trapeziums and one triangle to find an even more accurate value for the area under the curve.

The formula I shall use to find the area of a trapezium is:

 Area   =   sum of parallel sides  x height


Trapezium 1 = 4+16 x 2 = 20


Trapezium 2 = 16 + 64 x 4 = 160


Trapezium 3 = 64 + 100 x 2 = 164


Triangle = 2x4 = 4


Total = 20 + 160 + 164 + 4 = 348

Again I will multiply this by 2 to give the area for both sides of the parabola

348 x 2 = 696

This method is again, more accurate than the last but is still not precise because there is a lot of space that is left between the line of the trapezium, and the line of the curve. This is a problem that would make the area value to big.

...read more.



The first method I used was good for rough estimating but was very inaccurate when trying to calculate the area exactly. My second method although seemed again, a rough estimate, came closest to the result I achieved from Simpson’s rule. This may have been because although there was a lot of excess space, there was a gap at the top of the final rectangle, which may have made up for it. The next method I used was very inaccurate and gave a value that was too large. My next trapezium rule was all right and gave a closer value to the answer but the overall best method was Simpson’s Rule. It gave a value that was accurate because of using more trapeziums and therefore had the least excess space between the trapezium line and the curve. This is probably the closest result I could get when using straight-line formulae such as trapezium rules to calculate the area under a curve.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing problem.

    I shall now use a different method to discover the radius of the circle above. this has been shown below: Circumference = 2 � ? � r 1000m = 2 � ? � r The formula shall now be rearranged making the (r)

  2. Geography Investigation: Residential Areas

    The reason for this rejection could be down to the fact it was I who filled out the 'external questionnaire' thus giving the street an externality penalty point. At the end of the day I have an opinion and my personal opinion could reflect the results and for instance if

  1. Area Under a Straight Line Graph - Calculate the area under a straight line ...

    (100 / 2) + 20 50 + 20 70 units2 Taking y = x + 10 ... Total Area = x2 / 2 + xc 102 / 2 + ( 10 x 10) (100 / 50) + 100 50 + 100 150 units2 These tests I feel, prove that my generalisation is correct, and that it works for different intercepts.

  2. Regeneration has had a positive impact on the Sutton Harbour area - its environment, ...

    The area now had advertised just how big it was becoming and that it was soon to be a high profile, up-market area of the country. The fish market was resited and this helped it to become one of the best in the country once again.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work