• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20

the fencing problem

Extracts from this document...

Introduction

The Fencing Problem

Introduction

In this piece of maths coursework I am going to find out which shapes give the biggest area with a perimeter of 100m so that a farmer can fence of his field. I am going to find the area of several different shapes like triangles, rectangles, polygons and circles to see which shape give the biggest area to fence off his field. I will prove which shape gives the biggest area by putting my data into a line graph and a table of results.

Rectangles

First I will be looking at different rectangles with the same perimeter to find out which rectangle will give me the maximum area.

                    450m                                                                              350m

image00.pngimage01.png

 50m                                   50m                                 150m                                    150m                                            

                   450m                                                                               350m

image11.png

Perimeter = 1000m                                                                        perimeter = 1000m

...read more.

Middle

                                                                                       H = 83316.67

                                                                                       H = 83316.67                                  

                                                                                       H = 288.64

                          333.3mimage09.png

Base x height                              image10.png

         2

333.3 x 288.64image12.png

          2

Area = 48101.85

Base (m)

Height (m)

Area (m²)

333.3

288.64

48101.85

Graph including equilateral triangle

Circle

I am now going to find out the area of a circle with a perimeter of 1000m to see if it gives the maximum area.

image14.pngimage13.png

                                                          1000mimage15.pngimage16.png

image17.png

                                  159.2m

image18.png

The formula for the diameter is

C

D =                                                                                    R = D

                                                                                                 2

1000

D = 318.5m                                                                       R = 318.5

                                                                                                     2

D = 318.5m    

                                                                                       Radius = 159.2m

image19.png

Pentagon

Now I am going to find the area of regular polygons. I will start off with a pentagon cause it has the least amount of sides in my tables and graphs

Pentagons have 5 sides and the perimeter is 1000m so each side must be 200 because 1000 ÷ 5 = 200

image20.pngimage21.pngimage23.png

image25.pngimage24.pngimage26.png

image27.png

image28.png

This is equivalent

...read more.

Conclusion

÷ 9 = 111.11

image81.png

              111.11        

image81.png

        20        

                                                                           H    

     55.555m

        152.63

                      111.11

Decagon

A decagon has 10 sides and has a perimeter of 1000m so I have to do 1000  ÷ 10 = 100m

image82.png

image82.png

                                                                                                                                 18

H

50m        50m

        153.88

                      100m

Number of sides

Base

Area

3

333.3

48101.85

4

250

62500

5

200

68800

6

166.66

72162.1134

7

142.857

74174.87

8

125

75440

9

111.11

76314.24

10

100

76940

Circle

Infinite

79582.2

Conclusion

After finding the area of the following shapes – rectangle, square, triangle, circle and the polygons, I found out that the shape with the maximum area is the circle. You can clearly see in the graph and table above that no other shape reaches the area of the circle, which makes it the shape with the maximum area. Looking back at the graph you can see that none of the other shapes even if you carry on will ever reach the area of the circle. So the shape that gives the biggest area, for the farmer to fence off his field is the circle.

By Joseph Marlow

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing Problem

    This formula will allow me to find the largest area of any regular polygon and would also help me to double check my results so they are more reliable. I will use an octagon as an example to show the way I figured out the formula.

  2. The Fencing Problem

    Hypotenuse � - Base � = Height � VHeight � = Height I will now use this equation to find the height. 100� -50� = 7500 V7500 = 86.602m Now that I have found the height I can work out the trapeziums area.

  1. The Fencing Problem

    1000 6945.93 The highest area in this table consists of a parallelogram with a base of 100, sloping height of 400, and interior angle of 90�. With this information I can deduce that the parallelogram with the largest area in the table is in the form of a rectangle.

  2. Investigating different shapes to see which gives the biggest perimeter

    To work out the area of an isosceles triangle, I will use the following formula: Area = 1/2 Base x Height So before I can work out the area, I need to work out the height of the isosceles triangle.

  1. Fencing Problem

    Evaluating the Results Since the maximum value is obtained with a base measuring 333 1/3 then the remaining value is 666 2/3. Therefore, since an isosceles triangle has two sides equal then it means that all the three sides will have 333 1/3.

  2. Regeneration has had a positive impact on the Sutton Harbour area - its environment, ...

    walked around Sutton Harbour on the trip allowed me to capture images of views and objects that I thought were important to identify and be able to describe. Each one shows a different aspect of the Sutton Harbour regeneration, whether it was good or bad and it will now allow

  1. Fencing problem.

    shown above the formula that has been represented below shall be used: Area of triangle = 1/2 � Base � Height We now are familiar with the base but not the height. As the height is unknown, we shall discover the height before the investigation is continued.

  2. Fencing Problem - Math's Coursework.

    Tow ork out the height I can use Pythagoras' Theorem. Below is the formula and area when using a base of 200m. H� = h� - a� H� = 400� - 100� H� = 160000 - 10000 H� = 150000 H = 387.298 1/2 � 200 � 387.298 = 38729.833m wweb ebw stebebud eeb ebnt ceb enebtral ebcoeb uk.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work