• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 2247

The Fencing Problem

Extracts from this document...

Introduction

        Maths coursework        

Maths coursework

THE FENCING PROBLEM

Investigation

A farmer has exactly 1000 metres of fencing and wants to fence off a plot of level land.

She is not concerned about the shape of the plot, but it must have a perimeter (or circumference) of 1000m.

She wishes to fence off the plot of land, which contains the maximum area.

Therefore, my aim is to investigate the shape, or shapes that could be used to fence in the maximum area using exactly 1000 metres of fencing each time.

Rectangles

I will start with working out the area of rectangles as it is easy to find its area.

image10.jpgimage10.jpgimage10.jpgimage10.jpgimage10.jpgimage00.png

22,500m2           40,000m2            52,500m2            60,000m2        62,500m2

image10.jpgimage10.jpgimage10.jpgimage10.jpg

60,000m2           52,500m2             40,000m2           22,500m2

Table

Width / m

Height / m

Area / m2

50

450

22,500

100

400

40,000

150

350

52,500

200

300

60,000

250

250

62,500

300

200

60,000

350

150

52,500

400

100

40,000

450

50

22,500

Graph

image12.png

The table shows that the maximum area of a rectangle with a perimeter of 1000m is a 250 x 250 square.

Proof

In the graph, if we look at one point on either side of the highest point, they are clearly less than the maximum point, which proves that a square has the highest area.

Triangles

Next, I will look at the maximum area of a triangle with a perimeter of 1000m.

I will use the cosine rule to work out one of the angles:

Cos A = (b2 + c2 – a2) / (2bc)

Cos A = (2502 + 3502 – 4002) / (2 x 250 x 350)

...read more.

Middle

Cos A = 0.5 so A = 60o

Now that I have one angle, I can work out the area:

Area = ½ x b x c x Sin A

Area = ½ x 333.3 x 333.3 x Sin (60) = 48,112.5cm2

I think that the above triangle will give the highest area (for triangles) because with the rectangles, the one with the highest area was the square, which had all 4 sides the same length. Similarly, with the above triangle, all three sides were the same length and this meant that the above triangle had a higher area than the first one. However, to make sure that my prediction is right, I will work out the area of a triangle very similar to the one above.

image05.png

I will use the cosine rule to work out one of the angles:

Cos A = (b2 + c2 – a2) / (2bc)

Cos A = (3402 + 326.62 – 333.32) / (2 x 340 x 326.6)

Cos A = 0.5006 so A = 59.96o

Now that I have one angle, I can work out the area:

Area = ½ x b x c x Sin A

Area = ½ x 340 x 326.6 x Sin (59.96) = 48,074.02cm2

This shows that shapes with all sides the same length have the highest formula.

Why do regular shapes have the biggest area?

All regular sided shapes have an n (n being the number of sides in that shape) number of equilateral triangles. Therefore, it is important to realise why an equilateral triangle has the biggest area compared to any other type of triangle. However,

...read more.

Conclusion

Circumference = 2πr

1000 = 2πr

1000 / 2π = r

159.1549431 = r

Now I can calculate the area:

Area = πr2

Area = 79,577.4715459477cm2.

This shows that the shape with the maximum is with a perimeter (or circumference) of 1000m is a circle. I firstly worked out that as the number of sides increased, the area increased as well but at a decreasing rate. The reason that I realised that a circle would give the maximum area was because as the number of sides increased, it would at one point reach an infinite number, which would be a circle. So therefore, a circle must have the maximum area because it has the most number of sides from any other shape.

Why a circle has the maximum area

image04.pngimage03.png

As we can see from the two pictures above, the triangle and octagon fit into the circle easily. However, there are many gaps left between the shape and the circle. This represents the extra are the circle has and answers why a circle has the maximum area.

Conclusion

Ultimately, I would recommend the farmer build a fence in the shape of a circle, with a circumference of 1000m and a maximum area of 79577.4715459477cm2. This will give her the maximum area with the length of fence that she has.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing Problem

    perimeter of 1000 metres will be a square, as all of the sides are equal. Square I am going to start of investigating Quadrilaterals with a square. As a square has 4 equal sides I will only have one example as there is only one possible square with a perimeter of 1000 m.

  2. Fencing problem.

    I have discovered the area of five different quadrilaterals. Overall eight shapes have been discovered. The results have been shown below in a tabulated form: Name of quadrilateral Proportional Area (m2)

  1. The Fencing Problem.

    Under the first heading (Number of Sides) there will be a variable, whole, number between 3 and as higher number as desired (e.g. 30). Under the second heading there will be a formula to calculate the length of one equal side.

  2. Maths Coursework - The Fencing Problem

    This gives 108, which when id divided by two becomes 54. I also know that the bottom sides of the triangles are 200 (1000/5 = 200) Working out the area of the triangle is then a case of splitting it into two right angled triangles.

  1. The Fencing Problem

    49.5 50.5 22359.56 100 450 450.0 1000 500 400 50 50 22360.68 100 449.5 450.5 1000 500 400 50.5 49.5 22359.56 100 449 451.0 1000 500 400 51 49 22356.21 100 448.5 451.5 1000 500 400 51.5 48.5 22350.62 100 448 452.0 1000 500 400 52 48 22342.78 1)

  2. The Fencing Problem

    with sides of 333.3m long and a perimeter of 1000m.The area of this triangle is 48112.522m�. The triangle is an equilateral triangle. Quadrilaterals I will investigate if and how the interior angle of a parallelogram effects the area of the parallelogram and see if the parallelogram has a bigger area than a rectangle with the same perimeter of 1000m.

  1. Fencing Problem

    the area of 1 of the triangles and then times it by 6 to find the area of the whole hexagon.

  2. The Fencing Problem. My aim is to determine which shape will give me ...

    333.33 48,126.3 Analysis The line of best fit shows a strong positive correlation. On this graph I am not going to represent the data I retrieved from my scalene triangles, this is because that data would dramatically change my trend line, in a way that no observations would be possible to be made.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work