• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 2247

The Fencing Problem

Extracts from this document...

Introduction

        Maths coursework        

Maths coursework

THE FENCING PROBLEM

Investigation

A farmer has exactly 1000 metres of fencing and wants to fence off a plot of level land.

She is not concerned about the shape of the plot, but it must have a perimeter (or circumference) of 1000m.

She wishes to fence off the plot of land, which contains the maximum area.

Therefore, my aim is to investigate the shape, or shapes that could be used to fence in the maximum area using exactly 1000 metres of fencing each time.

Rectangles

I will start with working out the area of rectangles as it is easy to find its area.

image10.jpgimage10.jpgimage10.jpgimage10.jpgimage10.jpgimage00.png

22,500m2           40,000m2            52,500m2            60,000m2        62,500m2

image10.jpgimage10.jpgimage10.jpgimage10.jpg

60,000m2           52,500m2             40,000m2           22,500m2

Table

Width / m

Height / m

Area / m2

50

450

22,500

100

400

40,000

150

350

52,500

200

300

60,000

250

250

62,500

300

200

60,000

350

150

52,500

400

100

40,000

450

50

22,500

Graph

image12.png

The table shows that the maximum area of a rectangle with a perimeter of 1000m is a 250 x 250 square.

Proof

In the graph, if we look at one point on either side of the highest point, they are clearly less than the maximum point, which proves that a square has the highest area.

Triangles

Next, I will look at the maximum area of a triangle with a perimeter of 1000m.

I will use the cosine rule to work out one of the angles:

Cos A = (b2 + c2 – a2) / (2bc)

Cos A = (2502 + 3502 – 4002) / (2 x 250 x 350)

...read more.

Middle

Cos A = 0.5 so A = 60o

Now that I have one angle, I can work out the area:

Area = ½ x b x c x Sin A

Area = ½ x 333.3 x 333.3 x Sin (60) = 48,112.5cm2

I think that the above triangle will give the highest area (for triangles) because with the rectangles, the one with the highest area was the square, which had all 4 sides the same length. Similarly, with the above triangle, all three sides were the same length and this meant that the above triangle had a higher area than the first one. However, to make sure that my prediction is right, I will work out the area of a triangle very similar to the one above.

image05.png

I will use the cosine rule to work out one of the angles:

Cos A = (b2 + c2 – a2) / (2bc)

Cos A = (3402 + 326.62 – 333.32) / (2 x 340 x 326.6)

Cos A = 0.5006 so A = 59.96o

Now that I have one angle, I can work out the area:

Area = ½ x b x c x Sin A

Area = ½ x 340 x 326.6 x Sin (59.96) = 48,074.02cm2

This shows that shapes with all sides the same length have the highest formula.

Why do regular shapes have the biggest area?

All regular sided shapes have an n (n being the number of sides in that shape) number of equilateral triangles. Therefore, it is important to realise why an equilateral triangle has the biggest area compared to any other type of triangle. However,

...read more.

Conclusion

Circumference = 2πr

1000 = 2πr

1000 / 2π = r

159.1549431 = r

Now I can calculate the area:

Area = πr2

Area = 79,577.4715459477cm2.

This shows that the shape with the maximum is with a perimeter (or circumference) of 1000m is a circle. I firstly worked out that as the number of sides increased, the area increased as well but at a decreasing rate. The reason that I realised that a circle would give the maximum area was because as the number of sides increased, it would at one point reach an infinite number, which would be a circle. So therefore, a circle must have the maximum area because it has the most number of sides from any other shape.

Why a circle has the maximum area

image04.pngimage03.png

As we can see from the two pictures above, the triangle and octagon fit into the circle easily. However, there are many gaps left between the shape and the circle. This represents the extra are the circle has and answers why a circle has the maximum area.

Conclusion

Ultimately, I would recommend the farmer build a fence in the shape of a circle, with a circumference of 1000m and a maximum area of 79577.4715459477cm2. This will give her the maximum area with the length of fence that she has.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing problem.

    above data in the graph below: The graph above obviously indicates that decagon has the most coverage of area, this in other words means that it covers the most area therefore the 1000m fencing shall be used to most out of all the polygons.

  2. The Fencing Problem.

    This gives the internal angle of 1 right-angled triangle. My main formula will go under the Height heading and it will use Tan which is substituted by TAN in a spreadsheet. It will be =(B3/2)/TAN(E3) where B3 is 1 equal side and E3 is the angle inside a right-angled triangle.

  1. The Fencing Problem

    find the general formula for an n sided regular polygon I am going to construct a formula. To find the length of the base of a segment I would divide 1000 by the number of sides, so I could use 1000/s (s=number of sides), but because I want to find half of one segment I use (1000/s)/2.

  2. Maths Coursework - The Fencing Problem

    I also found that all of the triangles relate strongly to the equilateral. In conclusion, the largest area that can be formed from a triangle with a perimeter of 1000m is 48112.715m�. The Polygons The Pentagon The pentagon is completely new kind of shape, despite the fact that it only has one more side than the quadrilateral shapes.

  1. The Fencing Problem

    assess this for accuracy by testing the two closest sides to 450. i.e. A = V500 (500-100) (500-449) (500-451) A = V(500 x 400 x 51 x 49) A = 22356.21m� (4dp) These results confirm that 22360.68 is the largest area.

  2. Math Coursework Fencing

    Angle 30� 60� 90� Length m 450 450 450 Width m 50 50 50 Height m 25 43.3 50 Area m� 11250 19485 22500 Angle 30� 60� 90� Length m 400 400 400 Width m 100 100 100 Height m 50 86.6 100 Area m� 20000 34640 40000 Angle 30�

  1. The Fencing Problem My investigation is about a farmer who has exactly 1000 ...

    = Length (L) x Width (W) A = 250 x 250 A = 62500m2 Just as I thought, the area DOES in fact increase as the shape becomes shorter and fatter. I am now going to look at triangles and see if they will produce an even larger area.

  2. The Fencing Problem. My aim is to determine which shape will give me ...

    400 x 400=160,000 160000 - 10000 = 150000 V150000 = 387.2 387.2 x 100 = 38720 38720m2 3 350 350 300 300/2 = 150 150 x 150 = 22500 350 x 350 = 122500 122500-22500 = 100000 V100000 = 316.2 316.2 x 150 = 47430 47430m2 Scalene Triangles Shape No.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work