• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  • Level: GCSE
  • Subject: Maths
  • Word count: 1962

The fencing problem.

Extracts from this document...

Introduction

Math investigation

Aim -

A farmer has exactly 1000 meters of fencing, with it she wishes to fence off a plot of level land. She is not concerned about the plot, but it must have a perimeter of 100m.

I will be investigating different possible shapes, which could have the maximum area.

Hypothesis -

My hypothesis I predict that the shape that has the maximum area is a circle, as it as an infinite number of sides.

I will be starting my investigation with Quadrilaterals.

The first shape I will be investigating is a square, which is a regular shape with four sides that has all sides of equal length and equal angles.

                                                             Width

image00.png

                  Length

The perimeter has to be 1000 meters, therefore I will divide 1000 by four

1000÷4 = 250

                                                     250m

image00.png

          250m                                                                    250m

                                                       250m

To find the area of a square, I have to use the formula:

Length x width

Therefore, I will times 250 x 250

Area = length x width

Area = 250m x 250m

Area = 62500m²

A square is a regular shape and that is why there is only one possible area for a square, which = 62500m².

The next shape that I will be investigating, is a rectangle:

                                                            Length

image08.png

 Width

There are many possible areas for a rectangle with the perimeter of 1000 meters because the sides of a rectangle are different.

...read more.

Middle

The same theory applies to a Trapezium, as they are made up of diagonals and the heights will be less than the sides that are made up of hypotenuses.

This is because the hypotenuse is the longest side in a triangle and this is why the height is always going to be smaller.

To work out the length of a trapezium the following formula is needed:

 ½(a + b) x h

                                                a        

image10.pngimage09.png

image11.png

                                                 B

Area of a trapezium = ½ (a + b) h

Kites and Rhombuses

I do not need to investigate these shapes, both because if I take an equilateral kite, it becomes a Rhombus and a Rhombus is a square. The square has the biggest area of all the quadrilaterals. This shows that you do not have to investigate Kites and Rhombuses as they all fall under the categories of the square.

image12.pngimage13.png

image14.png

image16.png

Now I will investigate the areas of Triangles.

First I will try an equilateral triangle. It has all equal sides and the same angles.

There are three sides that all have to be the same length. The three lengths have to equal 1000 metres so you therefore have to divide 1000 by 3.

1000÷3 = 333.3333333 (to 7 d.p)

 333.3333333m                                  333.3333333m

333.3333333m

To find the area of a triangle you have to use the formula;

...read more.

Conclusion

My final investigation is the Circle:

Perimeter = 2Πrimage20.png

                                                        2Πr = 1000m

                                                        Πr = 1000 ÷ 2        

                                                        Πr = 500m

                                                        r = 500 ÷ Π        

                                                        r = 159.155

                                                AREA = Πr²

                                                         = Π (159.155) ²

                                                         = Π (25330.296)

Area of a Circle = 79577.47155m ²        

I have proven my hypothesis as the circle has the largest area with a perimeter of 1000m.

Radians

I am going to develop on the area of a circle as it is very similar to the area of a regular polygon which,

Area = 250000 ÷ (n x tan (180/n)

Radius = 1000 ÷ 2Π

From this I can see that I can get the formula of a regular polygon. This is how:

Place the above equation into a formula for a circle and you get

Area = Π x 500² / Π²

250000 / Π

Eventually the Polygon will turn into a circle, as a circle has an infinitve number of sides.

To develop on the idea of

250000/ n x tan (180/n) I am changing the formula into radians

Π / 180 is the method I found out for radians.

250000/nx tan (180/n) x (Π  /180)

From this I can see that 180 and 180 cancel and as tan doesn’t make a difference in the equation so I am left with

25000/ n(Π/n)

The n’s cancel out…

250000/ Π

Which shows again that the formula for a circle and polygon is very similar

I can also see that I can make an equation to use any perimeter.

If I take my original formula:

A = n(( ½ x 1000/n) x ½ x1000/n/Tan (180/n))

A = n(( ½ x p/n) x ½ x p/n/Tan (180/n))        

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing problem.

    = 2500m2 Now I shall calculate all the divided individual shapes together, which will give me the area of the total shape: Area of H = Area of rectangle A + Area of rectangle C + Area of square B Area of H = 15000m2 + 15000m2 + 2500m2 Area

  2. The Fencing Problem

    possible, while keeping to the 1000m perimeter (or circumference, in this case). Circle I will now aim to prove my prediction; I will use the conventional area formula (A = ?r�). To find out the radius, I will rearrange the formula for finding out the circumference (since we have a known variable already, C = 1000).

  1. t shape t toal

    5T + 7G = T-total 5 ? 15 + 7 ? 9 = T-total ?

  2. t shape t toal

    - (7 x 6) 30 Up1 28 98 (5 x 28) - (7 x 6) 30 Up 2 from original 22 68 (5 x 22) - (7 x 6) 30 Up 3 from original 16 38 (5 x 16) - (7 x 6)

  1. Geography Investigation: Residential Areas

    d2 / n3-n) Table 3 Spearman's Rank Intangible Score r AVG (Months) r d d2 -6 1 24.6 1 0 0 15 2 44.4 4 2 4 16 3 39.6 3 0 0 20 4 55.2 6 2 4 25 5 52.8 5 0 0 29 6 33.6 2 4 16 ?d2 = 24 Rs =1-(6?

  2. Koch Snowflake Math Portfolio

    Calculation for values of N6, l6, P6 and A6 : General Formula for Nn: a rn a= 3 r= 4 n= 6 Therefore: 3 (4)6 = 12288 General Formula for ln: a rn a= 1 r= 1/3 n= 6 Therefore: 1 (1/3)6 = 1/729 General formula for Pn: Pn =

  1. A farmer has exactly 1000m of fencing and wants to fence off a plot ...

    500 140 60 300 35496.4787 200 370 430 1000 500 130 70 300 36945.9064 200 380 420 1000 500 120 80 300 37947.33192 200 390 410 1000 500 110 90 300 38535.69774 200 400 400 1000 500 100 100 300 38729.83346 200 410 390 1000 500 90 110 300 38535.69774

  2. The Fencing Problem. My aim is to determine which shape will give me ...

    made is true and that the observation I made is true, so far. My hypothesis was that as I increase the amount of sides the area would increase; I then expanded on this point and said that the difference between the areas was decreasing.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work