• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  • Level: GCSE
  • Subject: Maths
  • Word count: 1962

The fencing problem.

Extracts from this document...

Introduction

Math investigation

Aim -

A farmer has exactly 1000 meters of fencing, with it she wishes to fence off a plot of level land. She is not concerned about the plot, but it must have a perimeter of 100m.

I will be investigating different possible shapes, which could have the maximum area.

Hypothesis -

My hypothesis I predict that the shape that has the maximum area is a circle, as it as an infinite number of sides.

I will be starting my investigation with Quadrilaterals.

The first shape I will be investigating is a square, which is a regular shape with four sides that has all sides of equal length and equal angles.

                                                             Width

image00.png

                  Length

The perimeter has to be 1000 meters, therefore I will divide 1000 by four

1000÷4 = 250

                                                     250m

image00.png

          250m                                                                    250m

                                                       250m

To find the area of a square, I have to use the formula:

Length x width

Therefore, I will times 250 x 250

Area = length x width

Area = 250m x 250m

Area = 62500m²

A square is a regular shape and that is why there is only one possible area for a square, which = 62500m².

The next shape that I will be investigating, is a rectangle:

                                                            Length

image08.png

 Width

There are many possible areas for a rectangle with the perimeter of 1000 meters because the sides of a rectangle are different.

...read more.

Middle

The same theory applies to a Trapezium, as they are made up of diagonals and the heights will be less than the sides that are made up of hypotenuses.

This is because the hypotenuse is the longest side in a triangle and this is why the height is always going to be smaller.

To work out the length of a trapezium the following formula is needed:

 ½(a + b) x h

                                                a        

image10.pngimage09.png

image11.png

                                                 B

Area of a trapezium = ½ (a + b) h

Kites and Rhombuses

I do not need to investigate these shapes, both because if I take an equilateral kite, it becomes a Rhombus and a Rhombus is a square. The square has the biggest area of all the quadrilaterals. This shows that you do not have to investigate Kites and Rhombuses as they all fall under the categories of the square.

image12.pngimage13.png

image14.png

image16.png

Now I will investigate the areas of Triangles.

First I will try an equilateral triangle. It has all equal sides and the same angles.

There are three sides that all have to be the same length. The three lengths have to equal 1000 metres so you therefore have to divide 1000 by 3.

1000÷3 = 333.3333333 (to 7 d.p)

 333.3333333m                                  333.3333333m

333.3333333m

To find the area of a triangle you have to use the formula;

...read more.

Conclusion

My final investigation is the Circle:

Perimeter = 2Πrimage20.png

                                                        2Πr = 1000m

                                                        Πr = 1000 ÷ 2        

                                                        Πr = 500m

                                                        r = 500 ÷ Π        

                                                        r = 159.155

                                                AREA = Πr²

                                                         = Π (159.155) ²

                                                         = Π (25330.296)

Area of a Circle = 79577.47155m ²        

I have proven my hypothesis as the circle has the largest area with a perimeter of 1000m.

Radians

I am going to develop on the area of a circle as it is very similar to the area of a regular polygon which,

Area = 250000 ÷ (n x tan (180/n)

Radius = 1000 ÷ 2Π

From this I can see that I can get the formula of a regular polygon. This is how:

Place the above equation into a formula for a circle and you get

Area = Π x 500² / Π²

250000 / Π

Eventually the Polygon will turn into a circle, as a circle has an infinitve number of sides.

To develop on the idea of

250000/ n x tan (180/n) I am changing the formula into radians

Π / 180 is the method I found out for radians.

250000/nx tan (180/n) x (Π  /180)

From this I can see that 180 and 180 cancel and as tan doesn’t make a difference in the equation so I am left with

25000/ n(Π/n)

The n’s cancel out…

250000/ Π

Which shows again that the formula for a circle and polygon is very similar

I can also see that I can make an equation to use any perimeter.

If I take my original formula:

A = n(( ½ x 1000/n) x ½ x1000/n/Tan (180/n))

A = n(( ½ x p/n) x ½ x p/n/Tan (180/n))        

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. t shape t toal

    p = number of translations x = T-number g = grid size t = T-total Combinations of translations (diagonal) For diagonal translation across a grid a combination of horizontal and vertical translations are used, therefore I predict that if I combine my 2 found equations for horizontal and vertical movement's, I can generate a general formula for diagonal translations.

  2. Geography Investigation: Residential Areas

    my hypothesis which when it comes to wrapping up my coursework as a whole I know exactly what I found from this hypothesis. Table 5 Type of housing Street Terrace Detached Semi-Detached Flat Maisonette Sarum Hill 10 0 0 0 0 Bounty Road 4 2 2 1 1 Penrith Road

  1. The Fencing Problem

    Area = 8 (.5 ( (1000 ( 8)) ( ((500 ( 8) ( (tan (180 ( 8)) = 75,444.173m� Diagram Regular 9 Sided Polygon: A nine-sided regular polygon is called a regular nonagon Area = 9 (.5 ( (1000 ( 9)) ( ((500 ( 9) ( (tan (180 ( 9))

  2. Fencing problem.

    I have discovered the area of six different polygons. These polygons that have been discovered are all regular. The results have been shown below in a tabulated form: Name of regular polygon Area (m2) Pentagon 68800 Hexagon 72217.2 Heptagon 74322.5 Octagon 75450.4 Nonagon 76392 Decagon 76950 I have represented the

  1. Graphs of Sin x, Cos x; and Tan x

    Here are some examples of angles subtended by the arc at the circumference. Remember The angle subtended by an arc at the centre of a circle is double the angle at the circumference. Question 1 Work out the size of the angle subtended by the arc at the centre of each circle.

  2. The Fencing Problem

    90 400.00 1000 40000.00 100 400 100 393.92 1000 39392.31 100 400 110 375.88 1000 37587.70 100 400 120 346.41 1000 34641.02 100 400 130 306.42 1000 30641.78 100 400 140 257.12 1000 25711.50 100 400 150 200.00 1000 20000.00 100 400 160 136.81 1000 13680.81 100 400 170 69.46

  1. Fencing Problem

    of the rectangle I am going to figure out the area of the rectangle. I have the height of the rectangle already as the height of the triangle is the also the height for the rectangle. * To find the lengths of the 2 sides of my rectangle I will

  2. t shape t toal

    215 - 63 = T-total ? 152 = T-total ? 152 = 152 5T - 7G = T-total 5 ? 22 - 7 ?

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work