• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1293

The fencing problem

Extracts from this document...

Introduction

The fencing problem

The objective of this task is to experiment with shapes to try and find the maximum area possible. The given problem is that a farmer has exactly 1000m of fencing. With it, she wants to fence off a plot of level land. She doesn’t mind what the shape is but it must have a perimeter of 1000 meters so we now have to find the best shape that the farmer can use.

Part one – By using scale drawings, I will examine some possible figures for the plot of land. In each case I must ensure that the perimeter is 1000m and I will obtain the enclosed area.

Part two – I will investigate the shape or shapes of the plot of land, which have the maximum area.

I am going to start the investigation by using a few quadrilaterals. I will experiment with these shapes, changing the lengths and widths and recording possible outcomes in a table.

Quadrilaterals

Key:        = 20m

Area = length x width

Area = 250 x 250

        = 62500m²

Area = length x width

Area = 200 x 300

       = 60,000m²

...read more.

Middle

62500

260

240

62400

270

230

62100

280

220

61600

290

210

60900

300

200

60000

310

190

58900

320

180

57600

330

170

56100

340

160

54400

350

150

52500

360

140

50400

370

130

48100

380

120

45600

390

110

42900

400

100

40000

410

90

36900

420

80

33600

430

70

30100

440

60

26400

450

50

22500

460

40

18400

470

30

14100

480

20

9600

490

10

4900

When the length and width are the same, the area is the largest, and the areas before and after this are the same, and it continues up and down the rest of the table. Now that I have found that a square has the greatest area of the quadrilateral group, I am going to find the triangle with the largest area. Because there is more than 1 variable, there are countless combinations, so I am only going to use isosceles triangles. This is because if know the base length, then I can work out the other 2 lengths, because they are the same. I did this by going up in 10’s and discovered a pattern occurring in the table. I have used the results from the quadrilaterals I have drawn with lengths of 50m, 100m, 150m, 200m and 250m to create a graph.

...read more.

Conclusion

Area = 8660.25404 x 10 = 86,602.5m2 (1dp)

All of the results that I have got so far have shown that as the number of side’s increases, the area increases. I am going to investigate this further with a regular hexagon (6 sides) and a regular heptagon (7 sides).

Hexagon

1000 ÷ 6 = 166.666… ÷ 2 = 83.333…

360 ÷ 6 = 60 ÷ 2 = 30

Tan = opp ÷ adj  

Tan 60 = 83.3333333 ÷ adj

Tan 60 x 83.3333333 = 144.3375673 = 144.338 (3 d.p)

Area = ½ x b x h = ½ x 83.333… x 144.338 = 6014.065

6014.065 X 12 = 72168.784m2

No. of sides

Area (m2)

3

48112.522

4

62500.000

5

68819.096

6

72168.784

I have made a table of the area of triangles, quadrilaterals, pentagons and hexagons. As you can see, the more sides there are, the bigger the area becomes. So my conclusion is that the circle will have the largest area, as it has an infinite number of sides. I will prove this theory by investigating a circle.

Circle

Not to scale

Circumference =  pi x diameter

1000 ÷ pi = 318.3098862 ÷ 2

= 159.154931

= 159.2 (1.d.p)

Area = pi x radius ²

Area = pi x 159.1549431²

Area = pi x 25330.29591

Area = 79,577.5m² (1.d.p)

As you can see – my prediction was correct considering that the circle with an infinite number of sides has a larger area than the rest of the shapes I have investigated.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. The Fencing Problem

    Because I am using hypotenuse and opposite I will have to use sin to work out the angle. Sin = Opp ( Hyp Sin = 333.333 ( 444.444 = 0.75m Sin0.75 = 48.59( This angle means that I now have enough data to find the height of the right-angled triangle A.

  2. The Fencing Problem

    334 289.83 1000 48111.37 332.5 333.75 289.40 1000 48112.07 333 333.5 288.96 1000 48112.45 333.5 333.25 288.53 1000 48112.50 334 333 288.10 1000 48112.23 334.5 332.75 287.66 1000 48111.64 335 332.5 287.23 1000 48110.71 335.5 332.25 286.79 1000 48109.46 336 332 286.36 1000 48107.88 336.5 331.75 285.92 1000 48105.97 Once again, the highest area has changed.

  1. Fencing Problem

    = 1000 L+W = 500 This shows that the length plus the width should exactly be 500. The value of L will vary from 1m to 499m it with width. Of course, I could have included 0 and 500 but if the length were 500m then it would mean that

  2. Fencing problem.

    The figure 's' shall be found by the following formula: Area of a scalene triangle (s) = the total perimeter of the scalene triangle � 2 I shall now discover the area of the triangle below: Area of a scalene triangle (s)

  1. Fencing Problem

    metres lies within the values of base 300 m - 390 m. I am now going to further investigate the values with the base of 300 - 390 to try and find the largest area possible. In order for me to work out the results of Isosceles triangles with the

  2. Geography Investigation: Residential Areas

    last twenty to thirty years we see the re-introduction of terrace housing. Both Vivaldi Close and The Beaches are situated in the part of Basingstoke according to both the concentric and Hoyt models where the middle-class housing is found, thus, it is private but small and convenient for first time buyers - hence the reason for the mass terraced housing.

  1. Beyond Pythagoras

    I must takes of the +1 and move this to the other side. 2B+1=A 2B=A -1 I now want B on its own so I need to change sides of the 2. B=A -1 2 I can now add the formula of A to the equation to get, B=(2n+1)

  2. The Fencing Problem

    380 310 244.949 46540.305 390 305 234.521 45731.554 400 300 223.607 44721.360 410 295 212.132 43487.067 420 290 200.000 42000.000 430 285 187.083 40222.817 440 280 173.205 38105.118 450 275 158.114 35575.624 460 270 141.421 32526.912 470 265 122.474 28781.504 480 260 100.000 24000.000 490 255 70.711 17324.116 Using this

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work