The Fencing Problem.

Authors Avatar

Edexcel – 1998        Specimen Coursework Task        Syllabus 1385

Mathematics GCSE        THE FENCING PROBLEM        Tiers F + I + H

A farmer has exactly 1000 metres of fencing; with it she wishes to fence off a plot of land.

She is not concerned about the shape of the plot, but it must have a perimeter of 1000m. So it could be

or anything else with a perimeter (or circumference) of 1000m

What she does wish to do is fence off the plot of land which contains the maximum area.

Investigate the shape, or shapes of the plot of land which have a maximum area.

Throughout this investigation I will check that the perimeter is 1000 meters by finding the total of all the outer sides. Also I will use refining as a way of finding the maximum area. When I talk about using the maximum area of the previous table the maximum area of each table will be highlighted.

Rectangles

The first shape I will test will be a rectangle. Having been told that the perimeter must be 1000 meters I will find the areas of three rectangles, each with different lengths of sides, making sure that the perimeter is kept the same.

To calculate the area I will use the formula LENGTH x WIDTH = AREA

or Area = lw.

Rectangle A:        l         =         450m

                w        =         10m

                Area        =         450 x 10

                Area        =        4500m2

Rectangle B:        l         =         300m

                w        =         200m

                Area        =         300 x 200

                Area        =        60000m2

Rectangle C:        l         =         100m

                w        =         400m

                Area        =         100 x 400

                Area        =        40000m2

Having carried out the above calculations I will create a spreadsheet with formulae to carry out more calculations. The headings will consist of Length, Width, Perimeter and Area. Under length there will be a variable number (less than 500 and greater than 0). The first formula will be put under the width heading. The width will be calculated by taking the length away from 500. This will guarantee the perimeter to be 1000m. The formula will be =500-B2 where B2 is the cell in which the length is. To double check that the perimeter is 1000m under the perimeter heading there will be another formula. This will be =(B2+C2)*2 where B2 is the length and C2 is the perimeter. It will be multiplied by 2 because the answer in the brackets would be just the total of two sides and not all four. Finally under the area heading there will be a formula. This will be =B2*C2 where B2 is the length and C2 is the width. This formula is the same as the one used previously to calculate the area of a rectangle. The formulas and headings will be entered in as shown in the table below.

Having entered the correct information I will be able to calculate the areas of many different sizes of rectangles with a perimeter of 1000m. I can do this in Microsoft Excel by dragging the formula boxes down, thus duplicating them but allowing them to refer to different lengths.

(Please see tables and graphs [Fencing Problem for Rectangles])

Join now!

To start with I used my spreadsheet to find the area of a few rectangles within the range of 1m and 499m.I then plotted a graph showing length against area. It showed a perfect curve. I decided that the line of symmetry of this curve would help to find the length that would give me the maximum area. I found the line of symmetry to be along the 250m mark on the x axis of the graph.

Hypothesis

I predict that the length of a rectangle that will give me the maximum area will be 250m. I have ...

This is a preview of the whole essay