• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Fencing Problem

Extracts from this document...

Introduction

The Fencing Problem A farmer has the need to enclose an area of land with 1,000 metres of fencing. He has to do so trying to make sure that he has enclosed the largest possible area of land. Therefore I will be investigating the shapes with the largest area that could be used to fence with 1000m of fencing. I will start by investigating different polygons. A polygon is a many sided shaped of strait lines which will be easy to measure, giving me more accurate results. These polygons will have a perimeter of 1000m. In this first section I will investigate the first set of polygons. Shape Equation Total area Perimeter Equilateral: 333.3+333.3+333.3 24,052� 1000�3= 333.3 288.64 x (333.3�2) ...read more.

Middle

The second shape of the polygon's family is the square: Shape Equation Total area Perimeter Quadrilateral: 250+250+250+250 62,500� 1000�4 250 x 250 = 62,500� To find the area of this square I have to: * Divide 1000 which is the perimeter by 3 which is the number of the polygon's sides * Multiply two of the polygon's sides By now I can see that between these polygons the square has the largest area. By the third shape, if this pattern is right the pentagon should have a larger area... But before continuing I will try two irregular polygons and investigate if by having different lengths of sides adding up to 1000m would affect the area. ...read more.

Conclusion

* Multiply the two shorter sides. I will have the area of a square so I divide it by 2 to make the area of an equilateral. Here I have proved myself wrong but I have stated something right: that irregular polygon's have smaller area than a regular polygon would have. With this investigation I have also shown again that the equilaterals have smaller area than the quadrilaterals. I have already shown the difference between irregular and regular polygons. I will continue investigating more areas of polygons and I think that as more lines the polygon has the larger the area. This document was downloaded from Coursework.Info - The UK's Coursework Database ?? ?? ?? ?? II ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Math Coursework Fencing

    60� 90� Length m 350 350 350 Width m 150 150 150 Height m 75 129.9 150 Area m� 26250 45465 52500 Angle 30� 60� 90� Length m 300 300 300 Width m 200 200 200 Height m 100 173.2 200 Area m� 30000 51960 60000 Angle 30� 60� 90�

  2. Geography Investigation: Residential Areas

    I have evidence for this as Figure 12 shows that residents want to get away from the CBD which is known for its poor class housing and cramped conditions. Figure 13 shows that Basingstoke has developed according to the concentric model in a southwesterly direction.

  1. Fencing problem.

    I shall use the same method as I did with the previous shape. Firstly I will divide the polygon into individual triangles, and then I shall find the area of each triangle and then multiply this value by the number of triangles.

  2. Maths Coursework - The Fencing Problem

    The Heptagon 360/7 = 51.42 180 - 51.42 = 128.58 128.52/2 = 64.29 1000/7 = 142.85 71.43 tan 64.29 = 148.35 71.4 x 148.3 = 10588.65m�. 10588.65 x 7 = 74120.3m�. Conclusion I found that the total area of a heptagon with a perimeter of 1000 is 74120.3m�.

  1. The Fencing Problem

    On the following pages, you will see the drawings and written method used to find the areas - I have implemented Pythagoras' Theorem to find out the height of each triangle, and have substituted the gathered information into the formula accordingly.

  2. Fencing Problem

    of the rectangle I am going to figure out the area of the rectangle. I have the height of the rectangle already as the height of the triangle is the also the height for the rectangle. * To find the lengths of the 2 sides of my rectangle I will

  1. The Fencing Problem.

    Also ? is represented by PI() in a spreadsheet. So instead of using 360 in my formula under the Internal Angle of 1 Triangle heading I will use 2*PI()/A3 where A3 is the number of sides. Under the Half Angle heading there will be a formula that will be =D3/2 where D3 is the internal angle of one triangle.

  2. The Fencing Problem

    From the graph, I can see that the maximum area of a rectangle with a range of lengths, ranging from 10m to 490min in 10m steps, is a square with a length of 250m, with a width of 250m and a perimeter of 1000m.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work