• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
• Level: GCSE
• Subject: Maths
• Word count: 1845

# The Open Box Problem

Extracts from this document...

Introduction

The Open Box Problem

## Equations for a square

Total length of paper = x

Total length of cutout = a

Width of base of box = c = x – 2a

Area of base = c2

Area of sides = 4ac

Volume = ac2

Square piece of paper with dimensions 12 x 12.

 Cut out Length Width Area of base Area of sides Volume 1 10 10 100 40 100 2 8 8 64 64 128 2.1 7.8 7.8 60.84 65.52 127.764 2.2 7.6 7.6 57.76 66.88 127.072 2.3 7.4 7.4 54.76 68.08 125.948 2.4 7.2 7.2 51.84 69.12 124.416 2.5 7 7 49 70 122.5 2.6 6.8 6.8 46.24 70.72 120.224 2.7 6.6 6.6 43.56 71.28 117.612 2.8 6.4 6.4 40.96 71.68 114.688 2.9 6.2 6.2 38.44 71.92 111.476 3 6 6 36 72 108 3.1 5.8 5.8 33.64 71.92 104.284 3.2 5.6 5.6 31.36 71.68 100.352 3.3 5.4 5.4 29.16 71.28 96.228 3.4 5.2 5.2 27.04 70.72 91.936 3.5 5 5 25 70 87.5 3.6 4.8 4.8 23.04 69.12 82.944 3.7 4.6 4.6 21.16 68.08 78.292 3.8 4.4 4.4 19.36 66.88 73.568 3.9 4.2 4.2 17.64 65.52 68.796 4 4 4 16 64 64 5 2 2 4 40 20

A graph to show the comparison of the cutout to the volume of a 12 x 12 square.

Square piece of paper with dimensions 16 x 16.

 Cut out Length Width Area of base Area of sides Volume 1 14 14 196 56 196 2 12 12 144 96 288 2.1 11.8 11.8 139.24 99.12 292.404 2.2 11.6 11.6 134.56 102.08 296.032 2.3 11.4 11.4 129.96 104.88 298.908 2.4 11.2 11.2 125.44 107.52 301.056 2.5 11 11 121 110 302.5 2.6 10.8 10.8 116.64 112.32 303.264 2.7 10.6 10.6 112.36 114.48 303.372 2.8 10.4 10.4 108.16 116.48 302.848 2.9 10.2 10.2 104.04 118.32 301.716 3 10 10 100 120 300 3.1 9.8 9.8 96.04 121.52 297.724 3.2 9.6 9.6 92.16 122.88 294.912 3.3 9.4 9.4 88.36 124.08 291.588 3.4 9.2 9.2 84.64 125.12 287.776 3.5 9 9 81 126 283.5 3.6 8.8 8.8 77.44 126.72 278.784 3.7 8.6 8.6 73.96 127.28 273.652 3.8 8.4 8.4 70.56 127.68 268.128 3.9 8.2 8.2 67.24 127.92 262.236 4 8 8 64 128 256 5 6 6 36 120 180

Middle

I have predicted that for a 20 x 20 square piece of paper that the maximum volume I can get will be with a cutout of 3cm.

Square piece of paper with dimensions 20 x 20

 Cut out Length Width Area of base Area of sides Volume 1 18 18 324 72 324 2 16 16 256 128 512 2.1 15.8 15.8 249.64 132.72 524.244 2.2 15.6 15.6 243.36 137.28 535.392 2.3 15.4 15.4 237.16 141.68 545.468 2.4 15.2 15.2 231.04 145.92 554.496 2.5 15 15 225 150 562.5 2.6 14.8 14.8 219.04 153.92 569.504 2.7 14.6 14.6 213.16 157.68 575.532 2.8 14.4 14.4 207.36 161.28 580.608 2.9 14.2 14.2 201.64 164.72 584.756 3 14 14 196 168 588 3.1 13.8 13.8 190.44 171.12 590.364 3.2 13.6 13.6 184.96 174.08 591.872 3.3 13.4 13.4 179.56 176.88 592.548 3.4 13.2 13.2 174.24 179.52 592.416 3.5 13 13 169 182 591.5 3.6 12.8 12.8 163.84 184.32 589.824 3.7 12.6 12.6 158.76 186.48 587.412 3.8 12.4 12.4 153.76 188.48 584.288 3.9 12.2 12.2 148.84 190.32 580.476 4 12 12 144 192 576 5 10 10 100 200 500

A graph to show the comparison of the cutout to the volume of a 19 x 19 square.

The formula for the maximum volume of the box for square shaped pieces of paper is:

x = side of square

/ = divide by

x/6 = side of square / 6

Conclusion

="c1">56

108

168

4

12

2

24

112

96

A graph to show the comparison of the cutout to the volume of a 10 x 20 rectangle.

Rectangle piece of paper with dimensions 10 x 30.

 Cut out Width Length Area of base Area of sides Volume 1 28 8 224 72 224 1.1 27.8 7.8 216.84 78.32 238.524 1.2 27.6 7.6 209.76 84.48 251.712 1.3 27.4 7.4 202.76 90.48 263.588 1.4 27.2 7.2 195.84 96.32 274.176 1.5 27 7 189 102 283.5 1.6 26.8 6.8 182.24 107.52 291.584 1.7 26.6 6.6 175.56 112.88 298.452 1.8 26.4 6.4 168.96 118.08 304.128 1.9 26.2 6.2 162.44 123.12 308.636 2 26 6 156 128 312 2.1 25.8 5.8 149.64 132.72 314.244 2.2 25.6 5.6 143.36 137.28 315.392 2.3 25.4 5.4 137.16 141.68 315.468 2.4 25.2 5.2 131.04 145.92 314.496 2.5 25 5 125 150 312.5 2.6 24.8 4.8 119.04 153.92 309.504 2.7 24.6 4.6 113.16 157.68 305.532 2.8 24.4 4.4 107.36 161.28 300.608 2.9 24.2 4.2 101.64 164.72 294.756 3 24 4 96 168 288 4 22 2 44 192 176

A graph to show the comparison of the cutout to the volume of a 10 x 30 rectangle.

Rectangle piece of paper with dimensions 10 x 40.

 Cut out Width Length Area of base Area of sides Volume 1 38 8 304 92 304 1.1 37.8 7.8 294.84 100.32 324.32 1.2 37.6 7.6 285.76 108.48 342.91 1.3 37.4 7.4 276.76 116.48 359.79 1.4 37.2 7.2 267.84 124.32 374.98 1.5 37 7 259 132 388.5 1.6 36.8 6.8 250.24 139.52 400.38 1.7 36.6 6.6 241.56 146.88 410.65 1.8 36.4 6.4 232.96 154.08 419.33 1.9 36.2 6.2 224.44 161.12 426.44 2 36 6 216 168 432 2.1 35.8 5.8 207.64 174.72 436.04 2.2 35.6 5.6 199.36 181.28 438.59 2.3 35.4 5.4 191.16 187.68 439.67 2.4 35.2 5.2 183.04 193.92 439.3 2.5 35 5 175 200 437.5 2.6 34.8 4.8 167.04 205.92 434.3 2.7 34.6 4.6 159.16 211.68 429.73 2.8 34.4 4.4 151.36 217.28 423.81 2.9 34.2 4.2 143.64 222.72 416.56 3 34 4 136 228 408 4 32 2 64 272 256

A graph to show the comparison of the cutout to the volume of a 10 x 40 rectangle.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Fencing Problem essays

1. ## Fencing Problem

Angle Of Each Isosceles (360 / Sides) Perimeter Area (m�) Pentagon 5 200 72 1000 68819.096 Hexagon 6 166.6666667 60 1000 72349.2467 Heptagon 7 142.8571429 51.42857143 1000 74161.47852 Octagon 8 125 45 1000 75444.1738 Nonagon 9 111.1111111 40 1000 76468.81721 Decagon 10 100 36 1000 76942.08846 20 Sided Shape 20 50 20 1000 78921.89395 50 Sided Shape

2. ## Fencing problem.

I shall divide the shape into triangles, which shall give me ten triangles. Now I shall find the area of one triangle and then the multiply the value obtained form the discovery of the area of one triangle by the total number of triangles present within the shape.

1. ## fencing problem part 2/8

This can only be achieved if the 'abcdCos2? ' part of the formula is a low as possible because this number is taken away from the number to be square rooted. Therefore abcdCos2 ? should equal zero. To make abcdCos2 ?

2. ## Fencing Problem

This indicates that an equilateral triangle has the largest area. I will now plot the results into a graph The graph also shows that the maximum area is from an equilateral triangle with sides 333.33m. Observations I entered the bases of 0m and 350 m in the graph.

1. ## Arceology paper

By using aerial photography, the entire area can be mapped and an overall view of the landscape can be obtained. There may be some clues from the sky that can be seen that might not be visible on the ground.

2. ## Investigation of Open Ended Tubes.

a 3-sided shape because this is the least number of sides a 2 dimensional shape can have. From now on, let No. of sides of cross-section = n. A =1/2bh Let us for the moment assume b = 20mm to reduce the number of variables.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to