• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  • Level: GCSE
  • Subject: Maths
  • Word count: 1845

The Open Box Problem

Extracts from this document...

Introduction

The Open Box Problem

Equations for a square

Total length of paper = x

Total length of cutout = a

Width of base of box = c = x – 2a

Area of base = c2

Area of sides = 4ac

Volume = ac2

Square piece of paper with dimensions 12 x 12.

Cut out

Length

Width

Area of base

Area of sides

Volume

1

10

10

100

40

100

2

8

8

64

64

128

2.1

7.8

7.8

60.84

65.52

127.764

2.2

7.6

7.6

57.76

66.88

127.072

2.3

7.4

7.4

54.76

68.08

125.948

2.4

7.2

7.2

51.84

69.12

124.416

2.5

7

7

49

70

122.5

2.6

6.8

6.8

46.24

70.72

120.224

2.7

6.6

6.6

43.56

71.28

117.612

2.8

6.4

6.4

40.96

71.68

114.688

2.9

6.2

6.2

38.44

71.92

111.476

3

6

6

36

72

108

3.1

5.8

5.8

33.64

71.92

104.284

3.2

5.6

5.6

31.36

71.68

100.352

3.3

5.4

5.4

29.16

71.28

96.228

3.4

5.2

5.2

27.04

70.72

91.936

3.5

5

5

25

70

87.5

3.6

4.8

4.8

23.04

69.12

82.944

3.7

4.6

4.6

21.16

68.08

78.292

3.8

4.4

4.4

19.36

66.88

73.568

3.9

4.2

4.2

17.64

65.52

68.796

4

4

4

16

64

64

5

2

2

4

40

20

A graph to show the comparison of the cutout to the volume of a 12 x 12 square.

image00.png

Square piece of paper with dimensions 16 x 16.

Cut out

Length

Width

Area of base

Area of sides

Volume

1

14

14

196

56

196

2

12

12

144

96

288

2.1

11.8

11.8

139.24

99.12

292.404

2.2

11.6

11.6

134.56

102.08

296.032

2.3

11.4

11.4

129.96

104.88

298.908

2.4

11.2

11.2

125.44

107.52

301.056

2.5

11

11

121

110

302.5

2.6

10.8

10.8

116.64

112.32

303.264

2.7

10.6

10.6

112.36

114.48

303.372

2.8

10.4

10.4

108.16

116.48

302.848

2.9

10.2

10.2

104.04

118.32

301.716

3

10

10

100

120

300

3.1

9.8

9.8

96.04

121.52

297.724

3.2

9.6

9.6

92.16

122.88

294.912

3.3

9.4

9.4

88.36

124.08

291.588

3.4

9.2

9.2

84.64

125.12

287.776

3.5

9

9

81

126

283.5

3.6

8.8

8.8

77.44

126.72

278.784

3.7

8.6

8.6

73.96

127.28

273.652

3.8

8.4

8.4

70.56

127.68

268.128

3.9

8.2

8.2

67.24

127.92

262.236

4

8

8

64

128

256

5

6

6

36

120

180

...read more.

Middle

I have predicted that for a 20 x 20 square piece of paper that the maximum volume I can get will be with a cutout of 3cm.

Square piece of paper with dimensions 20 x 20

Cut out

Length

Width

Area of base

Area of sides

Volume

1

18

18

324

72

324

2

16

16

256

128

512

2.1

15.8

15.8

249.64

132.72

524.244

2.2

15.6

15.6

243.36

137.28

535.392

2.3

15.4

15.4

237.16

141.68

545.468

2.4

15.2

15.2

231.04

145.92

554.496

2.5

15

15

225

150

562.5

2.6

14.8

14.8

219.04

153.92

569.504

2.7

14.6

14.6

213.16

157.68

575.532

2.8

14.4

14.4

207.36

161.28

580.608

2.9

14.2

14.2

201.64

164.72

584.756

3

14

14

196

168

588

3.1

13.8

13.8

190.44

171.12

590.364

3.2

13.6

13.6

184.96

174.08

591.872

3.3

13.4

13.4

179.56

176.88

592.548

3.4

13.2

13.2

174.24

179.52

592.416

3.5

13

13

169

182

591.5

3.6

12.8

12.8

163.84

184.32

589.824

3.7

12.6

12.6

158.76

186.48

587.412

3.8

12.4

12.4

153.76

188.48

584.288

3.9

12.2

12.2

148.84

190.32

580.476

4

12

12

144

192

576

5

10

10

100

200

500

A graph to show the comparison of the cutout to the volume of a 19 x 19 square.

image02.png

The formula for the maximum volume of the box for square shaped pieces of paper is:

x = side of square

/ = divide by

x/6 = side of square / 6

...read more.

Conclusion

="c1">56

108

168

4

12

2

24

112

96

A graph to show the comparison of the cutout to the volume of a 10 x 20 rectangle.

image03.png

Rectangle piece of paper with dimensions 10 x 30.

Cut out

Width

Length

Area of base

Area of sides

Volume

1

28

8

224

72

224

1.1

27.8

7.8

216.84

78.32

238.524

1.2

27.6

7.6

209.76

84.48

251.712

1.3

27.4

7.4

202.76

90.48

263.588

1.4

27.2

7.2

195.84

96.32

274.176

1.5

27

7

189

102

283.5

1.6

26.8

6.8

182.24

107.52

291.584

1.7

26.6

6.6

175.56

112.88

298.452

1.8

26.4

6.4

168.96

118.08

304.128

1.9

26.2

6.2

162.44

123.12

308.636

2

26

6

156

128

312

2.1

25.8

5.8

149.64

132.72

314.244

2.2

25.6

5.6

143.36

137.28

315.392

2.3

25.4

5.4

137.16

141.68

315.468

2.4

25.2

5.2

131.04

145.92

314.496

2.5

25

5

125

150

312.5

2.6

24.8

4.8

119.04

153.92

309.504

2.7

24.6

4.6

113.16

157.68

305.532

2.8

24.4

4.4

107.36

161.28

300.608

2.9

24.2

4.2

101.64

164.72

294.756

3

24

4

96

168

288

4

22

2

44

192

176

A graph to show the comparison of the cutout to the volume of a 10 x 30 rectangle.

image04.png

Rectangle piece of paper with dimensions 10 x 40.

Cut out

Width

Length

Area of base

Area of sides

Volume

1

38

8

304

92

304

1.1

37.8

7.8

294.84

100.32

324.32

1.2

37.6

7.6

285.76

108.48

342.91

1.3

37.4

7.4

276.76

116.48

359.79

1.4

37.2

7.2

267.84

124.32

374.98

1.5

37

7

259

132

388.5

1.6

36.8

6.8

250.24

139.52

400.38

1.7

36.6

6.6

241.56

146.88

410.65

1.8

36.4

6.4

232.96

154.08

419.33

1.9

36.2

6.2

224.44

161.12

426.44

2

36

6

216

168

432

2.1

35.8

5.8

207.64

174.72

436.04

2.2

35.6

5.6

199.36

181.28

438.59

2.3

35.4

5.4

191.16

187.68

439.67

2.4

35.2

5.2

183.04

193.92

439.3

2.5

35

5

175

200

437.5

2.6

34.8

4.8

167.04

205.92

434.3

2.7

34.6

4.6

159.16

211.68

429.73

2.8

34.4

4.4

151.36

217.28

423.81

2.9

34.2

4.2

143.64

222.72

416.56

3

34

4

136

228

408

4

32

2

64

272

256

A graph to show the comparison of the cutout to the volume of a 10 x 40 rectangle.

image05.png

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing problem.

    = Total perimeter � Number of sides Length of each side = 1000m � 5 Length of each side = 200m The angles of the triangle from the centre of the pentagon can be found by dividing 3600 by the number of sides of the shape that has been shown

  2. The Fencing Problem

    This can be used on any regular polygon with any number of sides. To find the area of a triangle the equation is half base multiplied by height. From the information above I can find the height and base. This means that I can use this information to find the height of the triangle.

  1. Fencing Problem

    350 320 330 1000 500 47906.16 350 325.1 324.9 1000 500 47925.71596 From looking at these results and referring to my past results for my Isosceles triangles I will now try and test the values that are the closest to Equilateral triangles as they have shown the largest area possible with a perimeter of 1000 m.

  2. Fencing Problem

    are not given the height therefore we have to use Pythagoras' Theorem a2+ b2= c2 (in this case a is the height) H2= c2- b2 rearranging it. (Just a reminder, b = 1/2 B and c = L) H = V (c2- b2)

  1. Fencing problem.

    However, the circle is most likely to have the largest possible area given that it has infinite amount of sides. I think this because in a circle there are no edges whereas other shapes do have them and therefore edges contribute into taking up some area of the particular shape.

  2. Investigation of Open Ended Tubes.

    As we know the perimeter to be 320, we can substitute c for 300 - a. h� = a�-(20-x)� = (300-a)�-x� Which clearly shows that a>h and 300-a>h. This means that h is greatest when a = 300-a = 300/2 = 150.

  1. fencing problem part 2/8

    This can only be achieved if the 'abcdCos2? ' part of the formula is a low as possible because this number is taken away from the number to be square rooted. Therefore abcdCos2 ? should equal zero. To make abcdCos2 ?

  2. Arceology paper

    To go along with these methods, as well as to map the entire area, aerial photography may be useful if the site is an open area. If the area were a woodland area, this technique would not work well and should be substituted with topographic survey.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work