• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Open Box Problem

Extracts from this document...

Introduction

GCSE Maths Investigation

The Open Box Problem

An open box is made form a sheet of card. Identical squares are then cut from each corner, making a cross shape. The card is then folded to make an open-lid box.

The Yellow squares are the shapes, which are removed. The box is made by folding along the dotted lines.

AIM: The main aim of this investigation is to find the relationship between the size of the rectangle cut and the volume of the box. The size of the rectangle cut which makes the volume of the box as large as possible must be determined. Remembering that a square is also a special form of a rectangle.

As well as the general aim there are two other aims:

  1. For any sized square sheet of card, investigate the size of the cut out square, which makes an open box of the largest volume.
  2. For any sized rectangular sheet of card, investigate the size of the cut out square, which makes an open box of the largest volume.

AIM 1

First I will be looking at aim 1 which uses a square sheet of card.

A square is being cut from each corner.

...read more.

Middle

A = 10

10cm

                                               8cm

                                                       10cm

                                              2cm

                                                            2cm          8cm

Y = A – 2X

The volume of the box = X x Y x Y (length x width x height)

Substitute Y with A – 2X in the equation V = X x Y x Y.

X (A – 2X) ² = V

Check:  

2 (10 – 2x2) ²

2(10 – 4) ²

2 (6) ²

2 x 36

72          

I have produced a graph to show how the volume changes according to the size of the squares cut from each corner of the original. A 10cm x 10cm piece of card was used. 1.1>X>2.2 because I know from previous calculations that the maximum point lies between X = 1cm and X = 2cm

X =  Length of one side of the squares cut out

A = length of one side of the original square before the corners are cut out.

image01.png

This graph shows that the volume reaches its maximum when X = 1.6

I noted down the maximum volume for each size of original card:

...read more.

Conclusion

Before I differentiated I put L in terms of W so the formula is simpler and doesn’t contain too many different letters, which could be confusing.

The following example demonstrates the route to answering the aim. This process can be carried out using any size rectangle but I will be using a rectangle in which L = 2W.

Therefore X (W – 2X) (2W – 2X) will be differentiated with respect to X.

Before differentiation can occur the formula must be expanded then simplified - getting rid of the brackets.

EXPAND:

V = (WX – 2X²) (2W – 2X)

V = 2W²X – 2WX² - 4X²W + 4X³

SIMPLIFY:

2W²X – 6WX² + 4X³

DIFFRENTIATE:

dV/dX must equal 0 for the maximum volume.

dV/dX = 2W² - 12WX + 12X²

This can be simplified by dividing by 2

dV/dX = W² - 6WX + 6X²

I recognized this formula as quadratic so I used the general formula:

To find out what X equaled.

A =  6

B = - 6

C = W

In a rectangle 10cm x 20cm the size of X needed to make the maximum volume is 2.1.

The area of this rectangle is 200cm². 2.1² is cut out from each corner. 2.1² = 4.41

2.205% is cut out from each corner to make the largest possible volume of box.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Mathematics Coursework: problem solving tasks

    3 star(s)

    2 x 2 2 x 4 = 8 4 8 - 4 = 4 3 3 x 3 3 x 4 = 12 8 12 - 8 = 4 4 4 x 4 4 x 4 = 16 12 16 - 12 = 4 5 5 x 5 5 x

  2. What the 'L' - L shape investigation.

    - 3 18 18 (3 x 8) - 3 21 21 (3 x 9) - 3 24 24 Thus my formula so far is as follows: - ( 5L ) + (-3g + 3) The two parts of the formula are in brackets, as each part has to be calculated separately and then added together.

  1. Open Box Problem.

    the cut of x, which will give the open box its maximum volume, is 6cm. I will now construct a table to prove that this answer is right just like I did for the two squares I investigated before. Cut x L (36-2x)

  2. Investigate the size of the cut out square, from any square sheet of card, ...

    x (2X-2C) x C V= (X-2C) x (2X-2C) C This is my first investigation: 32cm by 16cm piece of card If you look at the table above, you will see that the largest volume, 780cm cubed, was produced by the 3cm by 3cm square cut-out. As I have done in the two previous investigations, I have

  1. Mathematical Coursework: 3-step stairs

    51 52 53 54 55 34 35 36 37 38 39 40 41 42 43 44 23 24 25 26 27 28 29 30 31 32 33 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 111

  2. Boxes made in the shape of a cube are easy to stack to make ...

    This then helps to work out the formula, as all you need to do is work out the linear section. To prove this I will test it on a new shape. I will find a formula for this pattern by drawing a difference table: Number Of Layers (N)

  1. For my investigation I will be finding out patterns and differences in a number ...

    32 31 x 2 = 62 62 - 32 = 30 56 57 66 67 76 77 86 87 56 x 87 = 4872 86 x 57 = 4902 4902 - 4872 = 30 9 10 19 20 29 30 39 40 9 x 40 = 360 39 x 10

  2. the Open Box Problem

    I would have to prove that this formula/ratio should work on every sized square box. Now I will try a 30X30 square box: Small square length (cm) Volume (cm�) 1 784 2 1352 3 1728 4 1936 5 2000 6 1944 7 1792 8 1568 9 1296 10 1000 11

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work