• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27
  28. 28
    28
  29. 29
    29
  30. 30
    30
  31. 31
    31
  32. 32
    32
  33. 33
    33
  34. 34
    34
  35. 35
    35
  36. 36
    36
  37. 37
    37
  38. 38
    38
  39. 39
    39
  40. 40
    40
  41. 41
    41
  42. 42
    42
  43. 43
    43
  44. 44
    44
  45. 45
    45
  46. 46
    46
  47. 47
    47
  48. 48
    48
  49. 49
    49
  50. 50
    50
  51. 51
    51
  52. 52
    52
  53. 53
    53
  54. 54
    54
  55. 55
    55
  56. 56
    56
  57. 57
    57
  58. 58
    58
  59. 59
    59
  60. 60
    60
  61. 61
    61
  62. 62
    62
  63. 63
    63
  64. 64
    64
  65. 65
    65
  66. 66
    66
  67. 67
    67
  68. 68
    68
  69. 69
    69
  70. 70
    70
  71. 71
    71
  72. 72
    72
  73. 73
    73
  74. 74
    74
  75. 75
    75
  76. 76
    76
  77. 77
    77
  78. 78
    78
  79. 79
    79
  80. 80
    80
  81. 81
    81
  82. 82
    82
  83. 83
    83
  84. 84
    84
  85. 85
    85
  86. 86
    86
  87. 87
    87
  88. 88
    88
  89. 89
    89
  90. 90
    90
  91. 91
    91
  92. 92
    92
  93. 93
    93
  94. 94
    94
  95. 95
    95
  96. 96
    96
  97. 97
    97
  98. 98
    98
  99. 99
    99
  100. 100
    100
  101. 101
    101
  102. 102
    102
  103. 103
    103
  104. 104
    104
  105. 105
    105
  106. 106
    106
  107. 107
    107
  108. 108
    108
  109. 109
    109
  110. 110
    110
  111. 111
    111
  112. 112
    112
  113. 113
    113
  114. 114
    114
  115. 115
    115
  116. 116
    116
  117. 117
    117
  118. 118
    118
  119. 119
    119
  120. 120
    120
  121. 121
    121
  122. 122
    122
  123. 123
    123
  124. 124
    124
  125. 125
    125
  126. 126
    126
  127. 127
    127
  128. 128
    128
  129. 129
    129
  130. 130
    130
  131. 131
    131
  132. 132
    132
  133. 133
    133
  134. 134
    134
  135. 135
    135
  136. 136
    136
  137. 137
    137
  138. 138
    138
  139. 139
    139
  140. 140
    140
  141. 141
    141
  142. 142
    142
  143. 143
    143
  144. 144
    144
  145. 145
    145
  146. 146
    146
  147. 147
    147
  148. 148
    148
  149. 149
    149
  150. 150
    150
  151. 151
    151
  152. 152
    152
  153. 153
    153
  154. 154
    154
  155. 155
    155
  156. 156
    156
  157. 157
    157
  158. 158
    158
  159. 159
    159
  160. 160
    160
  161. 161
    161
  162. 162
    162
  163. 163
    163
  164. 164
    164
  165. 165
    165
  166. 166
    166
  167. 167
    167
  168. 168
    168
  169. 169
    169
  170. 170
    170
  171. 171
    171
  172. 172
    172
  173. 173
    173
  • Level: GCSE
  • Subject: Maths
  • Word count: 5020

To explore and find a relationship between the number of letters in a word and the number of arrangements of the letters there are.

Extracts from this document...

Introduction

PK!Ó|w½šÜ[Content_Types].xml ¢( ´UËjÃ0¼úF×+é¡”b;‡>Žm é(Ò:VkKBÚ¼þ¾k'1%MlHÈÅ ÄÎÌŽf×Éx]•Ñ|ÐÖ¤lYFZ¥Í<e_Ó·Á#‹

£Di
¤l³Û›dºq"ª6!e¢{â<È*bëÀÐMn}%Ž~Î?b


ü~8|àÒƒ¬1X–|¯Dáñ]TÄÃWÖ+ž[‹Æ"„˜àXô¼­«©S&œ+µHÂùÒ¨ÒÍs-AY¹¨ˆ*®áœ·B Öª2n¡ïjhž%/‹E‰Ñëš´míøv0?`ÕUÝEsq¼ÆC


jz”©²é&Ú…


UÝVìº9iiëH7ÌŽ¶È•Ðf¯ÿ¤Ž€›òïºÅí¥£®¬=r—²jâ­
œ¢qq´¡


¬5 |;ð¨¡MÏi÷‘æà

svÈ]í7³´+€7ßÑÅ40½”9í©˜•p1ß‘u²ƒî±‚ÙçÕÜÿÞ+¤¡À_îý?/¶À]ümþ¥õg<Æ~cÖÕGRÏ›
ÿÿPK!‘·óN
_rels/.rels ¢( Œ’ÛJA


†ïßaÈ}7Û

"ÒÙÞH¡w"ë„™ìw


̤ھ½£ ºPÛ^æôçËOÖ›ƒ›Ô;§<¯aYÕ Ø›`Gßkxm·‹PYÈ[š‚g
GΰinoÖ/<‘”¡<Œ1«¢â³†A$>"f3°£\…ȾTºIS‘ÌõŒ«º¾ÇôWš™¦ÚY
igï@µÇX6_Ö


]7~

fïØˉÈaoÙ.b*lIÆrj)õ,l0Ï%‘b¬

6ài¢ÕõDÿ_‹Ž…,        ¡        ‰Ïó|uœZ^tÙ¢yǯ;!Y,}{ûCƒ³/h>ÿÿPK!P͵7>word/_rels/document.xml.rels ¢( ¬”ËNÃ0E÷HüCä=qR <T§„Ô-„pãIbˆ²‡Gþ+¨iJKØxci®å{Æc¯Ö_ªK>Àyi4#yš‘te„Ô
#/åãÅ-I<r-xg40Òƒ'ëâülõÇpÈ·Òú$¸hÏH‹hï)õU
ŠûÔXÐa§6Nq


¥k¨åÕo€.²lIÝÔƒžÉF0â6"ä—½
Éÿ{›º–<˜ê]Æ´6K¾í ˜r×22Ji %ô4ÄeLˆOØ>bè°ßcLÄ9›˜ -pnÏðSçsù‹˜ùþ¨
;e

!Š€}&zœ?Ôsñ˘ñR…·°OW $§ƒ˜§¯š¿æñ:&h¡
N»°Sæúp¡61ŒÒÄ]L


ŸÖä2†’

ëø$èÁ¯W|ÿÿPK!²#Pà‡"ÜXword/document.xmlì]ÝrÛF–¾ßª}‡¦j+©’dþ‰¶™#Y¡ÇJIŽJ¶3ë«)lŠ“E)WyŒ™ØË“ìw‰†HYÁnAÝ©Š%ºÑýÿÓçüô×›é„]ó t}¯S©T+Œ{èzWʧo÷_UX9ÞЙøïTnyXùk÷¿ÿë§E{èæSîE


ðÂö5>GѬýâE8ó©ø3îáÑLW/¦Nðe>ÛøÓ™¹}wâF·/êÕj«’<ÆïTæ×N±?uú£ˆniû£‘;àÉôŽà!ãÆwþœLYŒø"àÌÁ÷±;
Ó§Mû4¼â8}Èõ}/q=¤ß[Ì2Ú0pØé$žö†³Àð0ÄÕŸã—O¬Uï;Y@zÄòŽ‡LA3ÉÔq½åc¹ý_nÞ6ïE<ö
zÔêE°]`©ïoéçŒ-ÚÀâð²S©V›µ—Ç=#¹ô39óI”ùDÜqˆ¢ÛÇW¯I§òŽ;„àÃÊ‹îO/ðTú

ý´C´gv¡,¢,]ĬÅ2]pZðkZØ æÌžøþœxÑ


O9t½J\´'Žw•^ãÞþ§4“›gî êþtÝ


ÇÎŒG·3ÎÜa§ò›*þûGTk@:


|”Ðýâ§^kU«{âß

óÛá


ÂB|Çþ¿U_U¡Þ@ïw*Ó£—{“£W{Ó£Ãø†ÉQ+þ…C ]·Ig™OœPüÎø¿ …ó)û®Êª,~¦¯ÅAé³:«Ñü—×é1Üut÷#zØQ}ó
é#wÄŽðýK·#¾’#þèÎɃšñÔ¤1¦î²£ÖÝ«¯ðÁÝ«/ÙÑ«»W[ìè¥t•â¨E¯ËdyiKXÄo"úÅÿÒ©D´}ßóø ¢]ïTó0ò§™Ëv*G¯÷ª?
...read more.

Middle

VÕ›/ê0g`×dŸ_°&c)¥ý°“oDÚ*¿¯+O–ê»–[Æ;±6…]q­²”S(ÀGFÌ—E#-m}A2¦¬ÞâýÓS^ß©{·ÈY¾º6íÙV§z]”g_´©^§RõªJUD‚3×ãÊ˺hM¿p;©W­x)Æe%<.·õ6?#çšn&‘’ŽáJë«]©Lâµ–å—ßÚn^¹Yž°²º’šjª©Át¿p8§‹

¶6ìΪµ".>tðØlèz”3¶Uô\ŸezéÓ9‡%,Ž©Æç¨F'PŽ; (úÖ÷"H—B‹Ú•,YŠµMŠ][R’ú¼ÞûÈô:
u("XEÕncø*t³¾Dy'_~gZÁWM³¤mµÞ¯|§Þ›F«j-5k©‰ªÈ¨œ

tµÒjGÅÊ·TwÐÁ|»6Q±p]P-5v?’¯q\¤;”1ðƒ€"ÂÚ¥Á!¼)Èk®£…¿


 Sx8[—¾„N–T=zTã‡\íy_JFDÚØ+,Æî`
pxò֡ˤŠ)
J¸ýDh[ÎÖFnM©ÝL»¢JÖÍÖkj«jÍÕ7§oÞ”o•ðΨû«cgÃÑÝ7X»8TUB䔂{+¢ý¦-­ÝNp<%>‚ûÆÞ~ä7iÓĪÌÊ힉+f“TãìnŠ$Ã
"ÓˆòÈC÷fuÓ[Û=3É$§ìWÒŸü;Òtñ,š–ÒiS}ú€á@ÑÂÅ1 Rµ]oŽcE¾Ô$lÛ>Ì>3‰wßUÌËÇ¢·æBFëå¶(pû9d(RQ`mEs@jG”JQ¯™öÆ
Úd‰?§ë¾CñªÕ]ŒBP5ÃÞ¸\K{¼µxSá"QÄn
€WGÍÀzbP‚ËÌzc¼°¾òoZ$Zn¬òÜQÝ Æn¹Üg(Þ0

 0ŽËé+H¦‡Ë‘ú*Ñüóçrxeé­.·:€A曼:Ïàr9©÷ÜߘŒÓhê«DóÏ~AÆ%Ôå,+^±âzÕ¯lð

u$Ó,-pŠÆ¨R—æí…(7ÆUFÕ²åéªÍÚËã^«"’ÆmžÚ—8#5ŸÆ#V—þ|bl;íîþÍ
E


·¿qÎ$Mi”Dy)dF)&©F)ZÖgUÔª!ŠVQVò^þüÏÚ\"'H3ÄA©¨yßûü@ÆO¡0د#©6WnŠ;;8•r³4 E
dðqê¦=N½¡Ø¿ž`
ÁSðŒÁ¾á39¥4Ä4[Ç.…ºPŠI¦


`·JÁzfeºYÆs*ßp˜•(â€YF˜‰»•`_?únu«ÓX%ê7ˆ#ùÈ¥{¡Û©¤W¾¯¢&Z¦øC¤p%zŒ{&>TŽéé`t;‘”T5ª•z±RÐ2´ô”T­Eª*Y1±­ªz5J¨

Y+m¹ë­´¸÷“ç/Ø,®Q×ʈO}­NzýùÇ¿½?ÿøÏ2‡ò`9n¸Ö¬Ú;—xÀdCLö!TÚÁbý


 Î5ÞŠCš¢ïĽ‡ùÒ>0tZ


gìú\ÞˆR¾“T#àPÅö²§6sÀµá‹B

U~UÉ)ºùó9ä¢F
Íëô·–÷“yófí¤”ÊË®U8‹
*‘ÜUhB'eH¹\Õ´ÏÖåjeõÉXwkHêPÁ
–JΑ¿"Ážn™¶uå³A'78‹£%sÝTï6„¨FÃø

E]4Š’”ok¨,ÝjvÈ\P™•§\­¦`HÎw¨©`ô
<žÙ¬“2«—–!»{ =KJüA›¾Eƒ×Š–ú¥mæ+—{¶óNãZà‹À"î1m ©”9á³fUÏ[™¨k y
¸7t½+òÚóÀà Šíñ®ù‰¿(Ø‚}&ÈzÇZ²fœ÷8³ü›Ò2¿µ÷ã›G%Ó²…¦ŸMA»¦d ªUdãsZg

¾éA½ÑÔW³€È5š¹*Šq€á󕉻Q´d†DŽ t‡O²‡še‚B‡ÒVä BE&ô΀Uó


êM¥6RBÍ‚Pƒ@aHÑ
°À¢$2,¡.}ŠD¨ÍÜò(Þ ªæ€PuÏÐWë,&T’h™(ƱªÜ
,¡fÕºAõšîˆ* šU_¬AM'™æ«¯˜T"QóEÚ,¡f•ô
­ ¥úØzg@„ªYõÚ·fBÍWíV-QÉ’E†%T™Põ‚”Uï
...read more.

Conclusion


ÃŽ¬Ì‡le¶ ^

è)oÎ_ŽÝ뎅fÞ$PØ


jæM…íZ.³y“Àê-oXŽ¬áöQUS9F±ófdO‹úo¨ñ&€úo¨»x·Cúo‹­
VS«âMaÎW}
ªŠ7ÄÖ£vÅoFeÞÃQ6ÿ¾Óƒx(l5Å›@a{Ç%Þ6áDBe¥ŽÀêG¼ ~Ä›êG¼ ~Ä›êG¼ îâÝ


éO¼,¶6XM­Š7Ä–
ªŠ7„M8Ú°V¼q×?»x(l5Å›@a{§&¨öJ`±TcYñ&°°'

7Ǩ~Ä›`Q?âMõ#ÞP?âMuïvHâM`±µÁjjU¼         ¶<XPU¼         ¶6¬oÜŒÏ.Þ

ÛAMñ&PØÞ©        ªÕ9‹í ËŠ7…ñÒY¼ l²-ˆcQ?âM°¨ñ&€úo¨»x·Cúo‹­
VS«âM±åÁ‚ªâM±µa­xãyvñ&PØ


jŠ7ÂöNMP­xXlÕXVê¬~Ä›ÂÀì,Þ6Ù„»ˆã¦~Ä›`Q?âMuïvHâM`±µÁjjU¼ ¶<XPU¼ ¶6è{¶p_”|=uÏÔ{å­2pàpXøKÎd

eN²ývHG`i!ƒèª‰•ºñh»‡Ž!£¢i)¼Òý€·t*…ÃÃ
•—?N¼¯¦0§ÑCêéͨ}ª–1éZ¬=ƒyæK(%Z–7ËõhP⤋¾ŠÒ$lø

•Šr#ÝY×AC,Á*ãÿÛTüÊÅó»l8Ø7e¿OtÁv.Ÿ5]¥bPÅu5Ñí+e[8“–¹ÛÙ«³‡åSÕù>Ö3á4§ª°~袪†5\É^÷¼j%éÝH¹<‡æ8¤Zåq”ȳ۸ì½[XR´.–fj&p’áëªl¬kñ ¨v´}à´} G¿;zÛÿJ3ôG™PsE°Xìs¯HGã‡Nã‡ÿ»ñ¸ü
ãû€}ç[ñY`ªò¹ËýèƒÆ

LŸyC8×ãàÙb¢ú¸ö
ÛÓZ!í_2
E"´5²å³HO–*ÐW°Ë÷fWÿ3mSÁ²A 7/


éHEI’½%ŠIZSªRë¨[©?~™…·°

qÏuý͆y`}ÎÆÌäa³O û¦±‘oøã[‚µP6×LV


ï…韟È8þ.Rmb®–œé¤ííâW‰ÚP°+rµp÷O±ÒÆ9¬Tu2æ­6½„Éj1•iQ$äpç¹ÒGðÆö€#|ÎñØ“£„MÇUø€%Nõјâ'Ñît\¤ŠÇ
S

˜ŽŸ¹—`ýœô‚¼>#}@(×,¦ŠÕñð

NÅ3D‘ùàíRAûþŠÐиJt³Žklòf´_ÌxÛštªà.uÓ¤™yL\á—2©ôWöþ?ÿÿPK!r=€sg¡docProps/core.xml ¢( Œ’_KÃ0Åß¿CÉ{—f™¥Í@eˆn 8Q|»$w[X›†$ûûéMÛ­nèƒoɽçþrN’l´+‹hƒÖ©Jç„õ¡•Tz‘“÷Ù8’ÈyЊJcNöèȈ__e¤¢²øj+ƒÖ+tQ i—

““¥÷&¥Ô‰%–àzA¡Cs^Ù|ØÚ5 V°@ÚO’[Z¢        h
ŒMG$G¤Ò¬mѤ X`‰Ú;ÊzŒþh=ÚÒý9ÐtΔ¥ò{2íž³¥h›zçT'Ün·½í ±ü3ú9¼5Qc¥ë»Hx&Eê•/³Œvëº*,‚¯,Ÿ‚]E/Z-–¾QœêõÍàü4<Â\¡¼ßó
¬-ÄÏ°×=ÁáVfô·¬ž´¸Qõ[òA£è¶áä&~{<Ê(JÛø§ÎÇàáq6&¼Ÿ0'w1»›%Ô
Ò$ùª^Ì×ÛByôùâÍ%ñàãËOÅ¿ÿÿPK-!Ó|w½šÜ[Content_Types].xmlPK-!‘·óN
Ó_rels/.relsPK-!P͵7>÷word/_rels/document.xml.relsPK-!²#Pà‡"ÜXp        word/document.xmlPK-!luå5j¹&,word/footnotes.xmlPK-!?ó~i³À-word/endnotes.xmlPK-!Ù/;¯tRX/word/header1.xmlPK-!–µ­â–Pú0word/theme/theme1.xmlPK-

!™Š¢í__Ã7word/media/image1.jpegPK-!H0üVGword/settings.xmlPK-!•¶QÄ­Lword/fontTable.xmlPK-!JØŠ’»ãMword/webSettings.xmlPK-!ÈËsiéãÐNdocProps/app.xmlPK-!X—MêEAïQword/styles.xmlPK-!r=€sg¡ ZdocProps/core.xmlPK¾\

...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Emma's Dilemma

    of = 10 + 11 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 Combinations = 66 Three X's and an increasing number of Y's Three X's and No Y's XXX Total: 1 Three X's and One Y: XXXY Total: XXYX

  2. I am investigating the number of different arrangements of letters

    For example: 1*2 = 2i 1*2*3 = 3i 1*2*3*4 = 4i so on So if n represent the number of figures of a number, then it has arrangements of ni. The formula: NI NI: Can be caculated on caculator. Process: pres key N (the number of figure), then press key I, then you would get the arrangements.

  1. Compare and contrast the fictional letters in 'Birdsong' with the real letters written to ...

    'Stephen's' letter in comparison indeed shows his attitude, but his resentment is much clearer. "I wanted to tell someone what it feels like...feeling the lice crawl against my skin...hearing the guns above me crying out to heaven." It is this opinion that is realistic and that would make the reader feel great empathy.

  2. We are investigating the number of different arrangements of letters.

    Can you see the pattern, the formular still work if we times the mutiply again. For example: for 4 figures with 2 pairs of 2 same number. a=(1*2*3*4)/(1*2*1*2)=6 it works so I expect it still work for 6 figures with 2 pairs of 3 same number.

  1. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    This means that the total number of arrangements possible is reduced by a factor of 4, or "2 ! X 2!" ( See later ). For example For 6 letters, all different, there are "6 X 5 X 4 X 3 X 2 X 1"arrangements.

  2. Investigate the number of different arrangements of the letters of Lucy's name.

    If N is the second letter, it has 4 possibilities where it can be placed. If G is the third letter, it has 3 possibilities where it can be placed. If R is the fourth letter, it has 2 possibilities where it can be placed.

  1. Emma&amp;amp;#146;s Dilemma.

    these names gave exactly half the number of combinations for the same number of letters. E.g. a four-letter name with no repeating letters has 24, whereas with a repeating letter it has 12 (half of 24) and similarly with a five-letter name with no repeating letters with 120 combinations, one with a repeating letter has only 60 (half of 120).

  2. Investigate the number of different arrangements of letters in a word.

    -I can ask a question, what if there was a five-letter word? How many different arrangements would there be for that? And how many words will be identical? Prediction: As I have found that there were 24 arrangements for a 4 letter word with all different letters and that there

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work