• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  • Level: GCSE
  • Subject: Maths
  • Word count: 1432

To find out what size squares must be cut out of the corners of square and rectangle pieces of card to give the box it would create its optimum volume.

Extracts from this document...

Introduction

As a class we were given a mathematical problem to solve as our first bit of maths coursework for GCSE, it is called the open box problem. We have been asked to find out what size square we would have to cut out the corner of a piece of card, either square or rectangular, to find the optimum volume of that box. I will start at 1cm³ Square and work up in 1cm³.

         I would expect the optimum volume to most of the time be in the decimal places so I will have to look at all the decimal places between the highest volume I have and the highest one on one of its sides. During this experiment I will be looking for relationships between the length of the side and the volume of the box.

Aim:-  To find out what size squares must be cut out of the corners

...read more.

Middle

2.6=120.224

2.7=117.612

Optimum Volume=2

Mini Summary

I don’t think I have enough results so I’m going to do a 15*15 to increase my results.

15*15 Square

Height (cm²)

1

2

3

4

5

6

7

Volume (cm³)

169

242

243

196

50

36

7

2.1=244.944

2.2=247.192

2.3=248.768

2.4=249.696

2.5=250                                   Optimum Volume= 2.5 = 250

2.6=249.704

2.7=248.832

2.8=247.408

2.9=245.456

The diagram below will help you to understand my formulas and equations.

                        10cm (x)

10cm (x)

To find the base area of the square you use the equation (x-2h)(x-2h).

Take h as 1cm

(10-2*1)(10-2*1)=64cm²

To find the size of square to cut out of the corner on a square to find the optimum volume use the formula:- cut-out = Length of side / 6

...read more.

Conclusion

        The one similarity I found between the squares and rectangles comes from looking at the graphs I have from the results. Looking at the graphs I can see that they are similar in shape. They all peak in roughly the same area and then begin to fall quite rapidly, this is what I said was what I thought would happen in my prediction.

        With the squares I can see from the ones I have looked at that the squares all peak in the high ones and the low twos. Unlike with the rectangles I found a formula I can use with all squares. It tells me what size I should make the squares on the corners for any size square

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Opposite Corners. In this coursework, to find a formula from a set of numbers ...

    4 star(s)

    94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  2. Marked by a teacher

    Opposite Corners

    4 star(s)

    Again I will start with algebra. z-number in the top left corner. z z+1 z+2 z+3 z(z+23)=z�+23z z+10 z+11 z+12 z+13 (z+3)(z+20)=z�+23z+60 z+20 z+21 z+22 z+23 (z�+23z+60)-(z�+23z)=60 Difference This proves that with any 3*4 rectangular box the difference is always 60.

  1. Marked by a teacher

    Opposite Corners

    3 star(s)

    I shall now move on and investigate a 3x3 Rectangle (square) and more rectangles in the same way. 3x3 Rectangle (square) 54 55 56 64 65 66 74 75 76 71 72 73 81 82 83 91 92 93 54x76=4104 71x93=6603 74x56=4144 91x73=6643 40 40 10 11 12 20 21

  2. Marked by a teacher

    In this piece course work I am going to investigate opposite corners in grids

    3 star(s)

    So again I have a multiple of 7. 9 10 11 12 16 17 18 19 23 24 25 26 30 31 32 33 Again 63 is a multiple of 7. 25 26 27 28 32 33 34 35 39 40 41 42 46 47 48 49 Yet again the answer is 63, a multiple of the number 7.

  1. Marked by a teacher

    To find a relationship between the opposite corners in various shapes and sizes.

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  2. Investigate Borders - a fencing problem.

    for border number 6: First replace 'n' with 6. 4 y + ( 2 x 6 - 2 ) = 4 y + 10 Now you can replace the 'y' with an 'n' to have the formula, to find the number of squares, for border number 6.

  1. Investigate the difference between the products of the numbers in the opposite corners of ...

    17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

  2. Mathematical Coursework: 3-step stairs

    Nevertheless using the annotated notes on the formula my formula would look like this now: > 6N =6n x 1= 6 > 6+b=46 Now I would need to find the value of b in order to use my formula in future calculations.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work