• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  • Level: GCSE
  • Subject: Maths
  • Word count: 1432

To find out what size squares must be cut out of the corners of square and rectangle pieces of card to give the box it would create its optimum volume.

Extracts from this document...

Introduction

As a class we were given a mathematical problem to solve as our first bit of maths coursework for GCSE, it is called the open box problem. We have been asked to find out what size square we would have to cut out the corner of a piece of card, either square or rectangular, to find the optimum volume of that box. I will start at 1cm³ Square and work up in 1cm³.

         I would expect the optimum volume to most of the time be in the decimal places so I will have to look at all the decimal places between the highest volume I have and the highest one on one of its sides. During this experiment I will be looking for relationships between the length of the side and the volume of the box.

Aim:-  To find out what size squares must be cut out of the corners

...read more.

Middle

2.6=120.224

2.7=117.612

Optimum Volume=2

Mini Summary

I don’t think I have enough results so I’m going to do a 15*15 to increase my results.

15*15 Square

Height (cm²)

1

2

3

4

5

6

7

Volume (cm³)

169

242

243

196

50

36

7

2.1=244.944

2.2=247.192

2.3=248.768

2.4=249.696

2.5=250                                   Optimum Volume= 2.5 = 250

2.6=249.704

2.7=248.832

2.8=247.408

2.9=245.456

The diagram below will help you to understand my formulas and equations.

                        10cm (x)

10cm (x)

To find the base area of the square you use the equation (x-2h)(x-2h).

Take h as 1cm

(10-2*1)(10-2*1)=64cm²

To find the size of square to cut out of the corner on a square to find the optimum volume use the formula:- cut-out = Length of side / 6

...read more.

Conclusion

        The one similarity I found between the squares and rectangles comes from looking at the graphs I have from the results. Looking at the graphs I can see that they are similar in shape. They all peak in roughly the same area and then begin to fall quite rapidly, this is what I said was what I thought would happen in my prediction.

        With the squares I can see from the ones I have looked at that the squares all peak in the high ones and the low twos. Unlike with the rectangles I found a formula I can use with all squares. It tells me what size I should make the squares on the corners for any size square

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Opposite Corners. In this coursework, to find a formula from a set of numbers ...

    4 star(s)

    173 174 175 176 184 185 186 187 188 189 190 191 199 200 201 202 203 204 205 206 214 215 216 217 218 219 220 221 229 230 231 232 233 234 235 236 From the previous page, 124 � 236 = 29264 131 � 229 = 29999

  2. Marked by a teacher

    Opposite Corners

    4 star(s)

    z+12 z+13 z+14 (z+4)(z+30)=z�+34z+120 z+20 z+21 z+22 z+23 z+24 (z�+34z+120)(z�+34z)=120 z+30 z+31 z+32 z+33 z+34 Difference This proves that my prediction is correct. This also proves that the difference of a 4*5 rectangular box = 120 I predict for a 5*6 rectangular box the difference will equal 200.

  1. Marked by a teacher

    Opposite Corners

    3 star(s)

    39 40 42x65=2730 17x40=680 62x45=2790 37x20=740 60 60 68 69 70 71 78 79 80 81 88 89 90 91 68x91=6188 88x91=6248 60 Again I have noticed a pattern occurring each time the width increases by 1 the difference increases by 20.

  2. Mathematical Coursework: 3-step stairs

    131 132 109 110 111 112 113 114 115 116 117 118 119 120 97 98 99 100 101 102 103 104 105 106 107 108 85 86 87 88 89 90 91 92 93 94 95 96 73 74 75 76 77 78 79 80 81 82 83 84

  1. Investigate Borders - a fencing problem.

    Diagram of Borders of square: 4x3 Table of results for Borders of square: 4x3 Formula to find the number of squares needed for each border (for square 4x3): Common difference = 4 First term = 14 Formula = Simplification = Experiment I will try to find the number of squares

  2. Open box. In this investigation, I will be investigating the maximum volume, which can ...

    Width of the section (cm) Volume of the cube (cm3) 0.1 0.1 1.8 1.8 0.324 0.2 0.2 1.6 1.6 0.512 0.3 0.3 1.4 1.4 0.588 0.4 0.4 1.2 1.2 0.576 0.5 0.5 1.0 1.0 0.500 0.6 0.6 0.8 0.8 0.384 0.7 0.7 0.6 0.6 0.252 0.8 0.8 0.4 0.4 0.128 0.9 0.9 0.2 0.2 0.036

  1. I will take a 2x2 square on a 100 square grid and multiply the ...

    = n�+40+22n (n�+40+22n) - (n� + 22n) = 40 Therefore the difference between the corners multiplied together will always be 40. Expanding the Task Further I now feel it will be interesting to look at a 4x4 number square on a 100 grid.

  2. Investigate the difference between the products of the numbers in the opposite corners of ...

    I think that the different will be 40. I have gotten this from the previous size of rectangles and I can see a pattern that is in it. 7a. 21 22 23 24 25 31 32 33 34 35 b.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work