• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  • Level: GCSE
  • Subject: Maths
  • Word count: 2978

Tubes Investigation

Extracts from this document...

Introduction

Maths Coursework

Syllabus 1385

TASK 2

TUBES

The basis of my investigation is, when I fold in various ways a piece of card like this, what will occur.

                                                         32cmimage09.pngimage12.pngimage00.pngimage01.png

                        24cmimage15.png

These are the prisms I will be using:

image27.pngimage30.pngimage21.pngimage24.pngimage02.pngimage18.png

image05.png

The first shape I will try to investigate will be rectangles. I will try all the various possibilities. I will start on the smaller side i.e. the 24cm. A substantial rule to remember to find the volume, is Length x Height x Width.

A = 11 x 1 = 11

V = 11 x 32 = 352cm

A = 10 x 2 = 20

V = 20 x 32 = 640cm

A = 9 x 3 = 27

V = 27 x 32 = 864cm

A = 8 x 4 = 32

V = 32 x 32 = 1024cm

A = 7 x 5 = 35

V = 35 x 32 = 1120cm

A = 6 x 6 = 36

V = 36 x 32 = 1152cm

A = 5 x 7 = 35

V = 35 x 32 = 1120cm

I realised in this review that the more cubic the piece of card gets the more possibilities in maximising its volume space.  To prove this notion I even tried to work out the rectangle after it, which resulted in a smaller volume.

After folding along the 24cm side, I moved on to the 32cm edge, the results are worked out in the same way except that the depth is now 24cm instead of 32cm.

A = 15 x 1 = 15

V = 15 x 24 = 360cm

A = 14 x 2 = 28

V = 28 x 24 = 672cm

A = 13 x 3 = 39

V = 39 x 24 = 936cm

A = 12 x 4 = 48

V = 48 x 24 = 1152cm

                                                                        A = 11 x 5 = 55

                                                                        V = 55 x 24 = 1320cm      

                                                                       A = 10 x 6 = 60

                                                                       V = 60 x 24 = 1440cm

                                                                      A = 9 x 7 = 63

                                                                      V = 63 x 24 = 1512cm

                                                                         A = 8 x 8 = 64

                                                                         V = 64 x 24 = 1536cm

                                                                        A = 7 x 9 = 63

                                                                        V = 63 x 24 = 1512cm

...read more.

Middle

image33.png

I would like to move on to triangles, and determine what their biggest volume would be. To work out the area of a triangle the formulae needed is half base times height. In this particular case I am not given the height, so foremost I have to work out the height, this is done using what’s known as Pythagerous’s Theorem. This method used is, A² + B² = C ².

A is known as the base, B the height, and C the length. But in this specific case the formulae is rearranged to C² + A² = B² .

image10.png

As a matter of interest another way to work out the area of a triangle is AB Sin C, but this only works when the triangle is when you know 2 sides and the angle between them.

The triangles I will be investigating are only isosceles, as any other kind would take too long, and it makes the calculations easier.

Here again, once the area of the triangle is found like last time you have to times the area by the length of the prism to find the volume.

I will start with triangles folded on the 24cm side:

image11.png

image13.png

11            11                            

                                                                     B = 11 – 1 =  121 – 1  =  120

                                                                     B =  120 = 10.95

                                                                     Area = 10.95 x 1 = 10.95cm

                                                            Volume = 10.95 x 32 = 350.54cm

          2

image14.png

                                                                     B = 10 – 2 = 100 – 4              10                                                                 B =  96 = 9.8

                                                                     Area = 9.8 x 2 = 19.6cm

                                                                Volume = 19.6 x 32 = 672.07cm

                                                                      B = 9 – 3= 81 - 9

                                                                      B =  72 = 8.49

9                9                                                   Area = 8.49 x 3 = 25.46cm

                                                               Volume = 25.46 x 32 = 814.5cm  

          6          

                        60°    

    8               8                                                       ½  x A x B x Sin C

                                                                         = ½ x 8 x 8 x Sin C  

                                                                           Area = 27.71 cm

                                                            Volume = 27.71 x 32 = 886.81 cm

              8

                                                                         B = 72 – 52 = 49 – 25

     7                7                                                    B =  24 = 4.9

                                                                     Area = 4.

...read more.

Conclusion

L/5 ÷ 2 = L/10.

Therefore the height of the right-angled triangle would be

Tan 36˚ x L/10 = H.

Now this is established I have to find the height.

L x L = L²                        =                    L²   x   Tan 36˚   x   H      

10 x 10 = 100                                       100  

FORMULA FOR THE CIRCLE PRISM

I will now try finding a formula for an open-ended cylinder.

First I will investigate a tube with a height of 24cm and a circumference of 32cm.

                                                                              24cm

Radius:                                     Circumference = 2Лr

Radius:                                     32 = 2Лr

Radius:                                     r = 32    

                                                      2Л

Radius:                                     r = 16    

                                                        Л  

Radius:                                     r = 5.0929cm

Volume of cylinder:                Лr²h

Volume of cylinder:                Л x 5.0929² x 24

Volume of cylinder:               = 1960cm³ (to 3 s.f.)

Now I will do the same as I have done except that I will use a cylinder with a height 32cm and a perimeter of 24cm.

Radius:                                    Circumference = 2Лr

Radius:                                     r = 24

                                                       2Л

Radius:                                     r = 12

                                                       Л

Radius:                                     r = 3.8197cm

Volume of cylinder:                Лr²h

Volume of cylinder:                Л x 3.8197² x 32

Volume of cylinder:                = 1470cm³ (to 3 s.f.)

VOLUME FOR ANY CYLINDER

I will now work out a theory to find out the volume of the largest shape, the cylinder.

                                                      Acm²

                                                          L

If the area of this piece of card is Acm² and the Length is Lcm then it is easy to determine the height will be A

                                                         L

If I then turn this card into a cylinder

The height of this cylinder will be A

                                                        L

And the circumference will be L.

So:                                       L = 2Лr

Which is the same as:         r = L

                                                 2Л

Area of the circle:               Лr²

So:                                       Л  L  ²

                                                2Л image08.png

Which is the same as:          Л x    L  x  L image08.pngimage08.png

                                                      2Л    2Л

Which equals:                      L²  

                                             4Л                  image08.png

Volume of cylinder:             L²   x  height

                                             4Л

Volume of cylinder:             L²  x  A

                                             4Л      L                                                                                                                    

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. When the area of the base is the same as the area of the ...

    the area of the base is bigger then the volume another odd thing is that the area of the 4 sides joins the top of the volume and area of the base but the rapidly drops this could have caused an anomalies in the graph and the results.

  2. Mathematics Gcse Coursework Tubes Investigation

    10.7square 114.5 - 28.6 = b square b square = 85.9cm b = 9.3cm height of triangle 10.7 � 9.3 = 99.51cm2 area of a square 99.51 � 2 = 49.8cm2 area of a triangle 49.8 � 24 = 1194cm3 volume of the triangular prism 10.7cm Hexagon 32 � 6

  1. Fencing investigation.

    tan (360�2n) To work out the area of 1 triangle is: 1000�2n x 1000 tan (360�2n) 2n To work out the area of the whole pentagon is therefore: 1000�2n x 1000 n x (tan (360�2n) 2n ) This whole thing can be simplified to: 500�n x 500 n x (tan (180�n)

  2. Borders Investigation

    Volume For our 2D sequence, our primary goal was to find and prove a formula for area; now it is volume. If we measure the volumes (i.e. count the number of cubes) of each cross in the sequence, we can put our results into a table and derive a formula, as before.

  1. t shape t toal

    - (7 x 9) As we can see there is a trend of 45 on a 9 by 9 grid if the translation is +1. I then looked at grids of different sizes. 6 X 6 grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

  2. Geography Investigation: Residential Areas

    For a brief rundown of my methods etc see Table 1. I will survey ten streets, starting from Sarum Hill in the centre, working south west along Winchester Road, then along the A30 until Brighton Hill roundabout where I'll go onto Brighton Way.

  1. Fencing - maths coursework

    180� n This would now be 180� so I have halved the triangle. (As I have said above) 500m this would be 500m because we have halved the triangle so the n base will be halved as well. 180� n I will be using tan for this type of trigonometry as I have the opposite (500m)

  2. Biological Individual Investigation What Effects Have Management Had On Grasses In Rushey Plain, Epping ...

    Go through the process again for the other coordinates listed, and then repeat all of this for the wooded area. Justification Of Method * The 10m X 10m area is big enough to get a good variety of samples from each site.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work