# Using grids of different sizes, try other transformations and combinations of transformations. Also, to investigate relationships between the T-total, the T-numbers, the grids size and the transformations.

Extracts from this document...

Introduction

MATH COURSEWORK

T- totals

Part III

Aim:

Using grids of different sizes, try other transformations and combinations of transformations. Also, to investigate relationships between the T-total, the T-numbers, the grids size and the transformations.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |

37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

Rotation:

A T-shape is rotated about the p number at 90 degrees, 180 degrees and 270 degrees.

T = 12 + 13 + 14 + 22 + 31 T = 92 | T = 24 + 33 + 42 +32 +31 T = 162 | T = 40 + 48 + 49 + 50 + 31 T = 218 | T = 20 + 29 + 38 + 30 + 31 T = 148 |

We already know the formula for a 0º rotation. Since it does not move, the formula is the same as the one that I have previously been using:

5p – 7g

I found this formula by making a diagram and then, filling it in appropriately (making many small equations for each box). I then added all the small equations together to make one big, final formula. I can use this method again to find out the formula for a 90º, 180º and 270º rotation.

There were 5 p’s, 7 g’s, (-1) and (+1). The (-1) and (+1) cancelled each other out, leaving 5p, and 7g. 7g was subtracted from 5p because the sum of all the g’s was – 7, therefore giving me the final equation: 5p – 7g

90º Rotation:

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |

37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

Observations:

- The left box is p, the position of the T-shape.
- The three boxes going across are all consecutive (they are one after another), which means if the first box was p, the next box is p + 1
- Which also means that the box after that is p + 2
- The top box subtractsg (the grid size) because it is decreasing. But, subtracting the grid size means that the box is right above. For example, in this example:

p – g = 31 – 9

= 22

22 is directly above 31 because each level increases or decreases by the grid size number. So, since the number I want it two spaces over, I add 2. The equation for that box is p – g + 2

- The bottom box adds g (the grid size) because it is increasing on the grid. But, since every level increased or decreased means you have to add or subtract the grid size number, adding g (which is 9 in this example) would give me the box directly underneath p. In this example:

Middle

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

6 x 6 grid:

Using the Formula:

T = 5p + 7

T = 5(22) + 7

T = 110 + 7

T = 117

T = 22 + 23 + 14 + 18 + 30

T = 117

1 | 2 | 3 | 4 | 5 | 6 | 7 |

8 | 9 | 10 | 11 | 12 | 13 | 14 |

15 | 16 | 17 | 18 | 19 | 20 | 21 |

22 | 23 | 24 | 25 | 26 | 27 | 28 |

29 | 30 | 31 | 32 | 33 | 34 | 35 |

36 | 37 | 38 | 39 | 40 | 41 | 42 |

43 | 44 | 45 | 46 | 47 | 48 | 49 |

7 x 7 grid:

Using the Formula:

T = 5p + 7

T = 5(24) + 7

T = 120 + 7

T = 127

T= 24 + 25 + 26 + 19 + 33

T = 127

180º Rotation

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |

37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

Observations:

- The top box p, is the position of the T-shape
- The box right underneath is one level down, which means the grid size number (g) must be added from p (because this grid increases as it goes down). Therefore, the equation for this box is p + g
- The box directly underneath that is two levels down from p, which means you multiply the grid size (g) by 2 (because you moved 2 levels), and then add it to p. The equation for this box is p + 2g
- Each time you go up a level the number decreases by the gird size, so therefore, each time you go down a level, the number increases by the grid size
- The three bottom boxes are also two levels down from p, which means you multiply the grid size number (g) by 2, and then add it to p (because it has decreased levels on the grid). Since these three numbers are consecutive numbers, the box on the left would be one less than the middle (p + 2g – 1), and the box on the right would be one more than the middle box ( p + 2g +1)

Working out the Formula:

Adding up all these small equations, I can come up with a final formula for a 180º rotation about p, to find T if we only know p.

T = p (p + g) + (p +2g) + (p + 2g – 1 ) + (p + 2g + 1)

T = 5p + 7g

*the (+1) and the (-1) cancel each other out

Testing the Formula:

1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9 | 10 |

11 | 12 | 13 | 14 | 15 |

16 | 17 | 18 | 19 | 20 |

21 | 22 | 23 | 24 | 25 |

5 x 5 grid:

Using the formula:

T = 5p + 7g

T = 5(12) + 7(5)

T = 60 + 35

T = 95

T = 12 + 17 + 21 + 22 + 23

T = 95

6 x 6 grid:

1 | 2 | 3 | 4 | 5 | 6 |

7 | 8 | 9 | 10 | 11 | 12 |

13 | 14 | 15 | 16 | 17 | 18 |

19 | 20 | 21 | 22 | 23 | 24 |

25 | 26 | 27 | 28 | 29 | 30 |

31 | 32 | 33 | 34 | 35 | 36 |

Conclusion

Working out the Formula:

I can use these small equations and add them together, to find the final formula for a 270º Rotation about p, to find T if we only know p.

T = p + (p – 1 ) + (p – 2) + (p – g – 2) + (p + g – 2)

T = 5p – 7

*the (+g) and (-g) cancel each other out

Testing the Formula:

5 x 5 grid:

1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9 | 10 |

11 | 12 | 13 | 14 | 15 |

16 | 17 | 18 | 19 | 20 |

21 | 22 | 23 | 24 | 25 |

Using the formula:

T = 5p – 7

T = 5(14) – 7

T = 70 – 7

T = 63

T = 7 + 12 + 17 + 13 + 14

T = 53

6 x 6 grid:

1 | 2 | 3 | 4 | 5 | 6 |

7 | 8 | 9 | 10 | 11 | 12 |

13 | 14 | 15 | 16 | 17 | 18 |

19 | 20 | 21 | 22 | 23 | 24 |

25 | 26 | 27 | 28 | 29 | 30 |

31 | 32 | 33 | 34 | 35 | 36 |

Using the Formula:

T = 5p – 7

T = 5(22) – 7

T = 110 – 7

T = 103

T = 14 + 20 + 26 + 21 + 22

T = 103

7 x 7 grid:

1 | 2 | 3 | 4 | 5 | 6 | 7 |

8 | 9 | 10 | 11 | 12 | 13 | 14 |

15 | 16 | 17 | 18 | 19 | 20 | 21 |

22 | 23 | 24 | 25 | 26 | 27 | 28 |

29 | 30 | 31 | 32 | 33 | 34 | 35 |

36 | 37 | 38 | 39 | 40 | 41 | 42 |

43 | 44 | 45 | 46 | 47 | 48 | 49 |

Using the Formula:

T = 5p – 7

T = 5(24) – 7

T = 120 – 7

T = 113

T = 15 + 22 + 29 + 23 + 24

T = 113

Formulas for rotation about p:

Formula | |

0º Rotation | 5p – 7g |

90º Rotation | T = 5p + 7 |

180º Rotation | T = 5p + 7g |

270º Rotation | T = 5p – 7 |

This student written piece of work is one of many that can be found in our GCSE T-Total section.

## Found what you're looking for?

- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month