• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

A titration to determine the ratio of moles of Sulfamic acid to Sodium Hydroxide in a neutralisation reaction

Extracts from this document...


Glen Musgrove 17/12/02 A titration to determine the ratio of moles of Sulfamic acid to Sodium Hydroxide in a neutralisation reaction Aim To determine the stoicheometric relationship between Sulfamic acid and Sodium Hydroxide in a neutralisation reaction, hence finding the bascity of Sulfamic acid. Hypothesis I predict that the ratio of moles of Sulfamic Acid and Sodium hydroxide will be 1:1 and they will react like this:- Safety When carrying out this practical wear safety glasses at all times. When filling the burette hold the funnel slightly above the rim so as to break the seal allowing air to leave and fluid to replace it instead of the funnel filling up. The above helps to prevent you over filling the burette and it spilling over. Always fill the burette after moving it lower down so that if it does spill over it does not pour onto you or into your eyes. Wash your hands thoroughly after handling any Acids or Bases. Do not rub your eyes or put your hands or fingers in your mouth at any point during the experiment. Do not sit at the desk as this may prevent you moving in the event of a spillage. Equipment List >Safety glasses >50 cm3 Burette. >25 cm3 Pipette. >Pipette filler. >250 cm3 Graduated flask. >Conical flask. >Boss clamp and Stand. >White tile. ...read more.


there is more than one Hydrogen that can be given off as a H+ ion, so the bascity is unknown. It could give off any one, two, or three of the Hydrogen atoms dependant on its bascity. Its bascity is between 1 and 3 so there are three possible reactions which could take place. A general formula for the reaction is:- (n)NaOH + NH2SO3H � NaNSO3H(3-n) + (n)H2O (where (n) is the bascity of the acid) The following three reactions could occur:- 1/ NaOH + NH2SO3H � NaNSO3H2 + H2O bascity is 1 and ratio is 1:1 2/ 2NaOH + NH2SO3H � NaNSO3H + 2H2O bascity is 2 and ratio 1:2 3/ 3NaOH + NH2SO3H � NaNSO3 + 3H2O bascity is 3 and ratio is 1:3 Research I researched Sulfamic Acid on the internet and in textbooks and found that it is a mono-basic acid which has the following formula and structure:- NH2SO3H Sulfamic Acid is a Zwitterion, a molecule with two charges that counteract each other, the Nitrogen and Oxygen have a greater pull on the bond pair of electrons due to there high electro-negativity, this causes the bond to be polar, the Nitrogen and Oxygens draw the electrons closer and become slightly negative, the Hydrogens become positive because the negative electrons are further away. ...read more.


The volume of NaOH added from the burette was measured accurate to 0.1cm3 at 20?C. The Sulfamic Acid was measured with a pipette which measures 25cm3 at 20?C. The mass of Sulfamic Acid solid measured was accurate to .001 grams. The graduated flask measures 250 cm3 at 20?C. When measuring liquids the meniscus must be taken into account, due to surface tension the surface within the pipette burette etc is curved. The meniscus is always lined up with the bottom touching the line and the line being held at eye level so that it is a solid line and not a cylinder like you would see if it was above or below eye level. This is why there is a continuous line around the glassware. When using a burette so long as the meniscus is measured from the bottom at both the start and end point it will not effect the accuracy unlike in a pipette. When filling the burette always remove the funnel because a drop of reagent could fall into the burette altering the start point. When moving solids from one container to another or when adding liquids always wash with distilled water to make sure all of the substances enters the vessels. Workings No of Moles = Mass(g) � Mr Molarity = Moles(m) � Vol (dm3) Ma x Va = Mb x Vb Na Nb Formula Working Ma Va Na Mb Vb Nb ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    The value of ?H, the enthalpy change of the reaction, relates to the amounts shown in the equation: 2 moles of Mg atoms, 1 mole of oxygen molecules and 2 moles of MgO. Endothermic reaction: When an endothermic reaction occurs, the heat required for the reaction is taken from the reacting materials.

  2. the synthesis of azo dyes, aspirin and soap

    3M (caustic) Measuring cylinder Bunsen Burner Saturated aqueous sodium chloride Digital weighing scale Filter funnel Filter paper Beaker Labels First Step Of Synthesis: Esterification 1mol glycerol + 3mol oleic acid 1mol glycerol trioleate + 3 mol water The reflux apparatus was set up as seen above in the synthesis of soap (Hydrolysis)

  1. Investigate a neutralisation reaction between hydrochloric acid and sodium hydroxide.

    From this book I obtained some relevant information that will help me plan my investigation. I also did preliminary work to see what changes I had to make to my plan in order to have the best plan as possible.

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    Ammonium Sulphate. Firstly work out the moles of Potassium Manganate (VII) (aq) in the titration. Moles = Concentration x Volume Moles = 0.1 mol dm -3 x 1.97 cm3 1000 The volume of the average titre is divided by 1000 to change the units from cm3 to dm3.

  1. Explain how the enthalpy change of neutralisation can be used to determine the relative ...

    Subsequently the distilled water will be gently poured into the beaker, making sure that any remaining solute on the watch glass will be rinsed gently into the beaker. To ensure the solute had fully dissolved, a thin glass rod could be used to grind and mix any large residual pieces

  2. An Experiment to determine What Factors Affect Neutralisation of 25cm Sodium Hydroxide

    During the preliminary tests, we experienced some problems with the Universal Indicator, as it was difficult to know exactly when the solution became neutral. Due to this, our results may not be as reliable as possible, and so for the main experiment we need an indicator that has obvious colour changes.

  1. To carry out a titration between a strong acid and a weak alkali, to ...

    My measurements were quite precise and reliable. When I weighed out the sodium carbonate using the electronic balance, I used a spatula to add or remove sodium carbonate, to ensure it was exactly 2.65g. When I was using the graduated volumetric flask, it is difficult to pour in distilled water and get it exactly on the graduation mark.

  2. Titrating Sodium hydroxide with an unknown molarity, against hydrochloric acid to find its' molarity.

    that approximately 25cm3 of the base reacts will react with 25cm3 of the sulphuric acid. To do this I need to calculate the concentration of sulphuric acid, I know that the concentration of the acid is roughly 0.10moldm-3. We must assume that it is this number as we do not know otherwise.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work