• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

A2 Chemistry -Assessed Practical In theory the remaining mass after the heating will be only FeSO4, so from this the mass that was evaporated off would be entirely water. From this we can calculate

Extracts from this document...

Introduction

A2 Chemistry - Assessed Practical Method 1 Mass (g) Total Mass Loss (g) Original Mass 1.44 0.00 Measurement 1 1.05 0.39 Measurement 2 0.90 0.54 Measurement 3 0.88 0.56 Measurement 4 0.86 0.58 Measurement 5 0.86 0.58 Calculations In theory the remaining mass after the heating will be only FeSO4, so from this the mass that was evaporated off would be entirely water. From this we can calculate: The number of moles of H2O is the n= m/Mr H=1 O=16 H2O = 18 =Mr 0.58/18 = 0.032 moles of H2O The remaining mass should be entirely FeSO4 so: Fe=56 S=32 O=16 56 + 32 + (4x16) = 152 = Mr The number of moles of FeSO4 = 0.86/152 = 5.657894737 x 10^-3 Moles To find the ratio of H2O we need to use: 0.032/5.657894737 x 10^-3 = 5.655813953 This is approximately 6 so the Formula of the Hydrated Iron (II) ...read more.

Middle

Using Mr = n/m 3.08 / 0.01103125 = 279.2067989 Then take away the Mr of FeSO4 gives the amount of water in the compound 279.2067989 - 152 = 127.2067989 Then divide by the Mr of water to get how many are in the original compound 127.2067989 / 18 = 7.067044381 So the formula of the compound is FeSO4.7H2O Evaluation Measurement Errors One of the largest measurement errors is in the weighing of the compound. The scales used only weigh to 2 decimal places. For a titration this is not accurate enough as the titration can precise. The preferable accuracy would be to at least 3 decimal places as the lack of accuracy could greatly affect the results of the calculations. Also in Method 1 we do not know whether or not there was any absorption of moisture during the cooling period. This can be a large problem as the method relies on the fact that the reaction no longer takes place when there is no more water. ...read more.

Conclusion

This may still be inaccurate as the steam given off will also be trapped within the burette. To avoid this it could travel through a condenser first in order to extract the steam from other products. With this the total mass of the compound could be found and calculations could be accurate enough to calculate the amount of H2O in the formula. There is also a problem in not knowing when the reaction is finished except by measuring the compound every so often to find when the mass no longer changes. A more accurate set of scales would help with this problem as we could check for when the mass of the compound stops changing by such large amounts, so that we could assume it was the compound that was now thermally decomposing. These errors are mainly to do with Method 1 and so I would again recommend Method 2 as there are far fewer inaccuracies and procedural errors. The only problem factor in Method 2 is human and unpredictable. ?? ?? ?? ?? Jonathon Higham ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. The aim of this practical experiment is to calculate the formula of hydrated Iron(II) ...

    The following are some of them. - Temperature: we had to wait for the crucible and the contents to cool before measuring other wise, the water was still evaporating whilst hot, until after two minutes when the water had stopped evaporating every time we did the experiment.

  2. Synthesis of Iron (II) Sulphate FeSO4

    Take to crystals out and put in the sealed plastic bag. D. Results Some shiny light-green crystals of Iron (II) Sulphate (FeSO4) are obtained along with some small brown particles and dust. Total weight of crystals of Iron (II)

  1. Collision Theory

    When the reaction finishes, the black X we have placed on an A4 sheet of paper will disappear. We will measure the time taken for the solution to become fully cloudy with a stop clock. We will perform this experiment a number of times and each time change the concentration

  2. Organic compound identification.

    250 cm3 of a solution of D containing 120 gdm-3 required 9 cm3 of water for complete hydrolysis. Working: D + H20 Hydrolysed Products 250cm-1 9cm-1 120 g/dm3 9 g ; 30 g ; 0.5 Mole Hence 0.5 Mole Of D is reacting = 30 g So 1 Mole = 60 g Mr of D = 60 M.F.

  1. SCIENTIFIC PRACTICAL TECHNIQUES

    pH - pH 14 12.86 10.01 C pH8 - pH9 10.35 10.30 D pH6 - ph7 7.25 8.29 TASK 2 (M4) The equipments were set up on the benches. Beakers with labels on them. pH4, pH7 and pH10 in the beakers.

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    occurring here it is possible to deduce that the gas being produced was Carbon Dioxide. Average Titre at 0 oc = 30.00 + 29.85 + 29.60 3 = 29.82cm3 Average Titre at 25 oc = 25.45 + 25.25 + 25.20 3 = 25.30cm3 Average Titre at 60 oc = 23.25

  1. Assessed Practical: Titration

    A white tile was placed underneath the conical flask so that any colour changes could be observed more clearly as the white would contrast with orange. The burette was read at eye level to avoid any parallax errors, as

  2. copper practical

    Evaluation As my copper is impure, it would not be very suitable for use in industry. When copper is produced in industry, companies ensure they do everything possible to increase the purity of the copper. Purifying copper by electrolysis Copper can be purified by electrolysis.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work