• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

Activity of Diastase On Starch

Extracts from this document...


ACTIVITY OF DIASTASE ON STARCH Brief Starch is a polymer where the individual units in the polymer are glucose molecules. The most important enzyme that degrades starch is called diastase. This enzyme catalyses a split in the starch polymer so that eventually what is left over are short chains consisting of just a few glucose units (maltose). These can then be broken down by water so that the entire starch polymer is degraded to glucose. The glucose concentration that will be produced in a fixed time by the action of diastase on starch can be measured to find out the rate of hydrolysis of starch, as the equation below shows: STARCH DIASTASE GLUCOSE + MALTOSE The reaction between starch + water = glucose is called hydrolysis. In the chemical reaction that occurs, water is introduced into the bond between two glucose units with a -OH becoming part of one side of the bond and a hydrogen (H-) becoming attached to the other glucose molecule. Rate of hydrolysis of starch ? concentration of glucose produced (In the above relation time is kept constant) Glucose concentration can be measured by titrating glucose solution with quantitative Benedict solution having sodium carbonate in it. 25ml of quantitative Benedict solution+10 grams of sodium carbonate can be titrated with a solution having glucose in it. This titration gives us the volume of glucose solution used to carry out the titration. Subsequently we can find out the rate of hydrolysis of starch by comparing the concentration of glucose produced in one minute. So, lesser the volume of glucose solution used greater the concentration of glucose and faster the rate of hydrolysis of starch. ...read more.


pH Volume of reaction mixture used Rate of the reaction = 1/ volume of reaction mixture used 4 10.24 ml 0.0976 4.8 9.65 ml 0.104 5 9.35 ml 0.107 7 11.00 ml 0.0909 9 11.67 ml 0.0857 A graph of the rate of hydrolysis of starch against ph is shown below pH affects the three-dimensional structure of all enzymes. Enzymes are made up of amino acids. Each amino acid has a -NH2 group and a -COOH group, not to mention certain amino acids that have an extra -COOH group (e.g. aspartame) or an extra -NH3+group (e.g. asparagines). PH is all about concentration of H+ ions. At low pH and high H+ concentration the predominant forms of these groups will be -COOH and -NH3+ or the "protonated forms". At neutral pH the predominant forms will be -COO and -NH3+. At high pH the predominant forms will be -COO- and -NH2. However the actual pH at which each group becomes ionised depends on the particular amino acid and also the environment in which the enzyme is found. The usual way of expressing this is the pK value: this pK is the pH at which half of the groups are ionised. Interactions between these positive and negative charges are a very important part of what holds the structure together in an enzyme. These links are known as salt links, salt bridges or electrostatic interactions and involve a + to - attraction. Changing the pH therefore alters the properties of these salt bridges. Even a small shift away from optimum pH might mean one of these salt bridges is affected and therefore the shape and activity and stability of the protein will also be affected. ...read more.


Following results were obtained from these titrations. Titration readings using 1% starch solution. Titration no Initial reading Final reading Volume of solution used 1 1.00 13.6 12.6ml 2 13.6 25.7 12.7ml 3 25.7 38.4 12.7ml Mean volume of solution used = 12.6+12.7+12.7 = 12.67ml 3 Titration readings using 2% starch solution. Titration no Initial reading Final reading Volume of solution used 1 1.00 13.3 12.3ml 2 13.3 25.6 12.3ml 3 25.6 37.8 12.2ml Mean volume of solution used = 12.3+12.3+12.2 = 12.27 ml 3 Titration readings using 3% starch solution. Titration no Initial reading Final reading Volume of solution used 1 1.00 13.3 12.3ml 2 13.3 25.5 12.2ml 3 25.5 37.8 12.3ml Mean volume of solution used = 12.3+12.2+12.3 = 12.27ml 3 Effect of change in the concentration of starch on the rate of hydrolysis of starch Concentration of starch Volume of solution used Rate of hydrolysis of starch = 1/ volume of solution used 1% 12.67ml 0.0789 2% 12.27ml 0.0815 3% 12.27ml 0.0815 A graph of concentration of starch against rate is shown below These results shows that increasing the concentration of starch increases the rate of the reaction. This is because there are more molecules of starch present to be broken down, increasing the rate. However there comes a certain point whereby increasing the concentration of starch will no longer affect the rate of the reaction. From my results I can observe that this optimum stage at where this happens is when the concentration of the starch is at 2 and 3 percent. The reason for this is because all the active sites of the diastase enzyme were busy in breaking down the starch molecules, leaving no available active sites for new starch molecules. Therefore increasing the concentration of starch did not effect the rate of the reaction. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Rates of Reaction - The Iodine Clock

    ]0 [ H2O2 ]1 [ I- ]1 The reaction is therefore second order overall. Error analysis: Error introduced by temperature: Although I endeavoured to perform the reactions at a constant temperature, due to fluctuations in room temperature this was largely impossible to achieve.


    Variables There are a number of variables, which must be controlled at all times throughout the experiment to ensure that my results are reliable and accurate, in addition to clarifying a fair test was conducted. The controlled variables are presented in the table below: Controlled variables Reasons why it must

  1. The Iodine Clock Investigation

    Hazardous chemicals and nature * H2SO4 - this is and acid, and therefore should be handled with care, even though low concentrations are being used. It should not be swallowed or allowed to penetrate the skin as it may have toxic properties at these concentrations.

  2. Effect Of Substrate Concentration On The Activity Of Catalase

    Conclusion: The results obtained during the course of the experiment seem to be quite conclusive. It possible to identify a pattern or trend in the results obtained. From the rate of reaction graph, we can see that the oxygen is produced more and more quickly via the breakdown of hydrogen peroxide (when the reaction is catabolic)

  1. The effect of concentration on the activity of catalase.

    The volume of buffer solution will remain constant throughout the experiment. The buffer solution will maintian the pH at 6.3 throughout the experiment. A pH of 6.3 is used as catalase works best at acidic conditions. The concentration and volume of hydrogen peroxide will also remain constant.

  2. The effect of enzyme concentration on the rate of amylase and starch reaction.

    If the concentration of substrate is low, enzymes will bind with all the substrate. The remaining enzymes will be unable to bind with any substrate and the reaction rate will not increase until more substrate is added. The diagram below demonstrates this: Fair Testing Key Variables I will keep these variables constant: -Concentration of starch -Concentration of amylase.

  1. Enzymes - show how substrate concentration affects the rate of reaction for an enzyme ...

    This can be analysed by the rate of reaction at 0.2 mol/dm� and 2.00 mol/dm�, because the difference between the rates of reaction is 0.1725 cm�/s, which means that an increase in concentration has lead to the increase in the rate of reaction.

  2. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    Figure 3 Indeed, any factor, which increases the number of collisions, will increase the rate of reaction. But, for most reactions, simply colliding is not enough - not every collision causes a reaction. As the particles approach and collide, kinetic energy is converted into potential energy and the potential energy of the reactants rises, as shown below.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work