• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

AIM: To determine the relationship between a period and the length of the simple pendulum.

Extracts from this document...

Introduction

image00.png

AIM:To determine the relationship between a period and the length of the simple pendulum.

Apparatus:

  • Long thread
  • Bob
  • Metre rule
  • Stopwatch
  • Retort stand
  • Clamp

Procedure:

  1.  The clamp was attached to the retort stand.
  2.  A metre rule was used to measure the different length of the thread.
  3.  The thread was attached to the clamp with the bob attached at the bottom of the thread.
  4.  The length of the thread was noted.
...read more.

Middle

This picture shows us the retort stand and the oscillations taking place.

Table of result (data collection)

Exp

Length of pendulum

Time for 20 oscillation

Average time&

...read more.

Conclusion

 Should be very careful when counting the oscillations. The thread should be properly measured. The way should be clear once the oscillations have started or else it can cause errors to take place. We should check if there is zero error. The bob should oscillate in a right position.

Conclusion:

We can conclude that if the thread has got a long length, the time it will take to complete 20 oscillations will be more.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Period of Oscillation of a Simple Pendulum

    In my hypothesis, I was unsure as to whether angle of release actually made any difference to the time of oscillation or not. I predicted that it would probably not as air resistance increases as speed increases, therefore slowing the pendulum down.

  2. FACTORS AFECTING SIMPLE PENDULUM`S PERIOD

    less kinetic energy than it has In air so the pendulum can not again swing up as much as it did in air so it travel a shorter distance and in each swing the distance to travel for one period gets very relatively shorter so the pendulum travel one swing very quickly.

  1. In this Coursework, we were given the task of investigating some factors which affect ...

    3- The bob is then released, and at the same time the stopwatch is turned on. 4- We allow 10 complete oscillations to occur and stop the stopwatch when they occur. This gives us the period of 10 complete oscillations.

  2. Investigating factors which affect the period time of a simple pendulum.

    This will ensure that there is no variation of the forces acting on the pendulum. - The value of gravitational field strength will inevitably remain constant, helping me to provide a fair test. - The intervals between the string lengths will increase by 10cm each time.

  1. Factors affecting the time period of a simple pendelum

    Frequency is the number of oscillations per second, which is measured in hertz (Hz). Angular Velocity- the angle at which the radius vector subtends at the center in one second is called the angular velocity of the particle. Its unit is radians per second. That is, (rad s-1) ?

  2. Investigating factors which affect the period time of a simple pendulum

    end of the string - The mass will be held to one side at an angle of 45 degrees (measured with a protractor), and then released. - A stop clock will be used to time taken for one full oscillation - This will be repeated a number of times, each

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work