• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Aim: To investigate the resistance of the 3 different types of wires, constantan, copper and nichrome, by using 1 set of circuit.

Extracts from this document...

Introduction

Investigating resistance

Naoto OKAWA

Aim:

To investigate the resistance of the 3 different types of wires, constantan, copper and nichrome, by using 1 set of circuit.

Research:

Constantan

A metal alloy made of 45 percent Nickel and 55 percent Copper. Constantan wire is used chiefly in electrical instruments and other equipment, which can take advantage of its unusual physical property, which is that, even over wide variations in operating temperature, its electrical resistance stays at an almost constant value. The melting point is 1221 to 1300 °C. Has low conductivity.

Copper

Wire commonly made from copper by drawing from a hot-rolled rod without annealing; however, the smaller sizes may involve intermediate anneals. Melting point is 1084.62 °C. Has high conductivity.

Nichrome

A nickel-chromium alloys with high electrical resistance and an ability to withstand high temperatures; used for resistance heating elements.

...read more.

Middle

Temperature

Take experiment in same temperature condition

Because these affect to wires and changes the original resistance

Material used in Circuit

Use all the same materials

Because condition will be changed and changes the data

Materials:Diagrams:

Power pack

Constantan wire

Copper wire

Nichrome wire

Standard wire

Crocodile clip

Ammeter

Voltmeter

Precaution:

-   Ensure no water around because they are conductor and charges electricity

  • Be careful with wire getting burned due to high voltages
  • Be careful with wire heating up
  • Watch out on sparks occurred when using crocodile clip

Method:

  1. Connect up a series circuit
  2. Attach an ammeter with a gap between two wire with crocodile clip
  3. Attach wires in the circuit
  4. Connect voltmeter in parallel to wires
  5. Let the current go through
...read more.

Conclusion

Our data is reliable because we had 2 trials to ensure our results. No anomalous data were occurred in our experiment. However, it could have be occurred by setting the circuit wrongly for example connecting ammeter/voltmeter in parallel/ series or connecting negative and positive opposite. This topic is all related to environments because the wire we used are from natural resources and we were investigating resistance of them.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Investigate young's modulus behind Constantan and Copper.

    4 star(s)

    There is a large percentage of Nickel, which is contained within constantan and therefore the high strength property it contains lies in its ratio of nickel it has. An alloy is very different to a metal due to the properties and the difference lies in their atomic arrangement.

  2. Marked by a teacher

    Draw stress and strain graphs for the metal copper and the alloy constantan. Calculate ...

    4 star(s)

    load/force applied to it then it would go back into its original length. However if more load/force is applied and the material exceeds its elastic limit then the material yields and it becomes permanently deformed. (Adapted from Physics CD-Rom 40s).

  1. Marked by a teacher

    Resistance Aim: my main aim is to investigate the factors that affect the resistance ...

    3 star(s)

    If there are more free electrons, less energy is needed to be spent. There is no way that this can be calculated with the available level of equipment other than experimentation. The other reasons in concern such as impurities in the wire, thermal properties and the state of illumination at

  2. Peer reviewed

    Investigation in resistance in wires

    5 star(s)

    in school time was a major issue, I believe that we balanced the two issues very well because we had enough time at the end to retest our mistakes and get all the results we needed. I have the most precise results possible with the amount of time allocated and the equipment on offer.

  1. Resistance and Wires

    This was necessary to give an accurate reading of current. The voltmeter was used in parallel because I was measuring potential difference. The voltmeter measured the potential difference of the area of which it was in parallel with. Due to the fact that this experiment involves a long wire, I chose to use 10v DC in the circuit.

  2. Resistance of wires

    As we (at our level of studies) do not have the privilege to use as sophisticated equipment as advanced scientists, there is no way we can know the number of free electrons of the wires we are using. So we can understand that Nichrome must have a small amount free electrons, and copper must have more free electrons.

  1. Physical - Circuit

    Voltage (Volts) Current (amps) Resistance (?) 5 0.13 2.5 0.052 10 0.13 1.8 0.0722 15 0.17 1.77 0.0960 20 0.18 1.73 0.1040 25 0.3 1.7 0.1765 30 0.37 1.7 0.2176 In this table, I can see that the resistance weren't stable.

  2. The aim of the investigation is to calculate the young's modulus of copper and ...

    Then 200g were added to the test wire and not the reference wire, as the reference wire was there to show how much the test wire had stretched. The 200g was added for 2 minutes, the reason this was done as the wire may not have reacted to the weight

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work