• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9

# An Experiment to Determine the Enthalpy Change for the Decomposition of Calcium Carbonate.

Extracts from this document...

Introduction

An Experiment to Determine the Enthalpy Change for the Decomposition of Calcium Carbonate Aim: to determine the enthalpy change for the decomposition of calcium carbonate CaCO3(s) CaO(s) + CO2(g) Problem: this experiment cannot be done because many reactions have enthalpy changes that cannot be found directly from a single experiment due to many factors which includes the fact that you cannot measure the amount heat that has been put in from the Bunsen burner. So in order to determine the enthalpy change for the decomposition of calcium carbonate Hess's Law needs to be used because it provides a method for the indirect determination of the enthalpy changes. Hess's Law is an extension of the First Law of Thermodynamics. Hess's Law states that, if a reaction can take place by more than one route and the initial and final conditions are the same, the total enthalpy change is the same for each route. So I will measure the temperature changes when calcium oxide and calcium carbonate reacts with hydrochloric acid solution. Then I can use a Hess' Law cycle to calculate the enthalpy changes using the formula: Heat produced = mass of solution x change in temperature x specific heat capacity of water This equation will help me to calculate the enthalpy changes of each experiment. I then drew a Hess' Law cycle to illustrate the enthalpy values. CaCO3(s) CaO(s) + CO2(g) ?H? CaCO3(s) CaO(s) + CO2(g) R2 + 2HCl acid + 2HCl acid R1 CaCl2(aq) ...read more.

Middle

Safety Safety is very important and it is necessary to follow safety procedures. It is important to wear eye protection when working with any acid. Also long hair should be tied back. Be careful when handling glass ware and keep stools under bench so that they are not in the way. The chemicals used are corrosive it is important to take extra care while working around them. Especially when handling with the hydrochloric acid (HCl) this is corrosive and it may cause burns when it in contact with skin. The vapour is very irritating to the respiratory system. The hazards of the chemical were taken from the hazard cards. Accuracy In order to reduce errors it is necessary to choose accurate and reliable equipment. That why using measuring cylinder would be a good choice. This instrument has an accuracy of �0.05cm�, which is suitable for the experiment and should produce accurate and reliable results. Calculations Once I done the experiment I will use the results to calculate the enthalpy change for the decomposition of calcium carbonate (CaCO3). But first I will need to calculate the heat produced from calcium carbonate (CaCO3) reacting with hydrochloric acid (HCl) and calcium oxide (CaO) reacting with hydrochloric acid (HCl). To do this I need to use the formula: Heat produced = mass of solution x change in temperature x specific heat capacity of water Once I work out the heat produced for calcium carbonate (CaCO3) ...read more.

Conclusion

* The main different in value would be due to heat loss cause so much heat is loss when replace the lid to the polystyrene beaker after the calcium oxide and calcium carbonate put in. Also through the actual polystyrene beaker itself, the thermometer and the hole where the thermometer is put through. * Not all the heat goes into the solution some would go into the thermometer, the polystyrene beaker so the heat is being absorbed by other objects instead of the solution. * The concentration of the calcium oxide or calcium carbonate may not have been exactly right. * Not all of the calcium oxide reacted in the second experiment cause there was still calcium oxide in the beaker at the end. That meant that the enthalpy value I got for calcium oxide is wrong. * Because there were so much errors in both experiments that meant the final change in heat for the decomposition of calcium carbonate was very inaccurate (74.6%) due to all the factor mentioned above. Improvements > If equipment rinsed wait till it's dry before using it. > Use a container which will not absorbed as much heat as the polystyrene beaker does > Maybe conduct the experiment in a close container where not so much heat can escape into the air. > Or extend the experiment by doing exactly the same method but timing it so by recording down the temperature for every 30 seconds. This could be done by computer which would reduce the error of reading the thermometer wrongly. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Aqueous Chemistry essays

1. ## How much Iron (II) in 100 grams of Spinach Oleracea?

It is impossible to measure the electrical potential only the potential difference or voltage, by connecting together 2 different half-cells and measuring the difference as a voltage (6). The standard electrode potential or redox potential can be arranged in an electrochemical series with the most negative values at the top

2. ## The aim of this experiment is to find the enthalpy change for the decomposition ...

You will then need to fill up the measuring cylinder up to the mark. Then pour it into the second polystyrene cup and add about half of the sodium carbonate then a few seconds later add the rest. Then measure the temperature until the reaction stops and note down the highest peak.

1. ## Application of Hess's Law

powder of either sodium hydrogen carbonate or sodium carbonate required to fully react with 50cm3 of HCl using the above equations. The number of moles in 50cm3 of 2 molar acid is (50/1000) x2 = 0.1 moles. The R.A.M of 1 mole of (NaHCO3)

2. ## An experiment to determine the enthalpy changes using Hess's law

Temperature ( � C) 0 23.0 30 23.0 60 23.0 90 21.0 120 21.0 150 21.0 180 21.0 210 21.0 240 22.5 270 22.0 300 22.0 4) Temperature change by using 3.85g of sodium carbonate Mass of the container on which the sample was weighed = 11.48g Mass of the

1. ## Test Hess' law by converting NaOH to NaCl by using two different routes and ...

NaCl +H2O(l) 1. The 25 cm3 aqueous NaOH is taken in an insulated calorimeter . The initial temperature is noted. 2. Aqueous 25 cm3 HCl in added to it. The apparatus is stirred and the final temperature is noted.

2. ## Explain how the enthalpy change of neutralisation can be used to determine the relative ...

Furthermore chemicals may have to be placed within a fume cupboard to rid of any noxious fumes. Below is a risk assessment concerning the chemicals used within the investigation, along with information regarding 'potential' dangers, as well as precautions that may need to be executed when dealing with an unknown

1. ## The aim of this experiment is to answer the following question: What is the ...

Below shows graphs for all of the temperatures showing time from the beginning of reaction to the reaching of equilibrium. The table of results shows all of the repeats I did for all of the temperature ranges. It also shows that moles of acid in the sample. Temperature (degrees Celsius)

2. ## Determination of the Heat of Formation of Calcium Carbonate

Final Temperature / oC 50 46 Temperature Rise / oC 27 24 Table 1 - Results of Experiment A 1st Trial 2nd Trial Mass of CaCO3 used / g 2.12 2.20 Initial Temperature / oC 23 22 Final Temperature / oC 24 23 Temperature Rise / oC 1 1 Table 2 - Results of Experiment B 3.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to