• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25

An experiment to find the resistivity of nichrome

Extracts from this document...

Introduction

An experiment to find the resistivity of nichrome A. Planning Plan of the method to be used: - The resistivity of nichrome can be determined using the equation ??=?RA/L Where: R:- Is the resistance of the wire in ?"ohms" and can be determined using the equation R=V/I where "V" is voltage in volts and "I" is current in Amperes. L:- Is the length of the nichrome wire used in metres. A:- Is the cross-sectional area of the wire in metres square and can be determined using the equation A= ??d2 where "d" is the diameter of the wire. If I plot a graph of length on the x-axis against resistance on the y-axis. From the relation R = ? L /A which corresponds to the st. line equation ? y=mx the graph should be a st. line passing through the origin where "m" is the gradient of the st. line graph and corresponds to ?/A. Since the cross-sectional area of the wire can be found by knowing it's diameter. Therefore the resistivity of nichrome can be calculated. ? Diagram of the circuit used in this experiment List of the apparatus used: - 1- Power pack supply of 4V 2-A variable resistor 3-A full scale deflection ammeter with a measuring range of 0-1 A 4-A digital voltmeter with a measuring range of 0-5 V 5-P, Q represents terminal blocks. 6-Circuit wires 7-PQ=Nichrome wire 8-A meter ruler 9-Michrometer screw-gauge 10-Sellotape Detailed method: - I set up the circuit as shown in the diagram that I have drawn. I started the experiment by taping a meter ruler between the terminal blocks P, Q so that I could measure 100cm of nichrome wire. I made sure that the wire was carefully tightened at both terminals to try to minimise the kinks or twists in the wire. I then switched on the power pack supply and adjusted the variable resistor until a constant current of 0.2A was flowing through the circuit. ...read more.

Middle

5 10 15 20 25 30 35 40 45 50 This will investigate the value of varying the length of the wire. The repeat results will be produced in a graph similar to this. I will need a ruler, different metals and an instrument to measure the surface area of the wire. I will also need a voltmeter and an ammeter. The equipment will be set up in the following manner as shown in the circuit diagram so that I can measure the voltage readings and ammeter readings for each length and wire. I will vary the Wire by placing a crocodile clip at different lengths down the wire in order to vary the lengths. I will use the results of the investigation to answer the question by placing the results into a chart and then transferring the information onto a graph so that is easy to interpret. We can see that if my prediction was correct because we can see that there is a direct proportionality between the factors and the resistance. Other work and preliminary work that I have done that will help me in this experiment is that How the length of a wire changes the resistance The resistance of a wire depends on certain factors. Investigate the effect of two of these factors - Planning Some variables that will be relevant to this investigation are: * Length * Thickness * Temperature * Voltage * Resistance * Material Of these the variables will be input and output voltages in experiment one, and length and resistance in experiment two. The other variables (temperature, material and voltage) will have to be kept constant in both experiments to make sure that only length, thickness and resistance are investigated. In experiment 1 the same bit of wire and the same thickness need to be kept constant. In experiment 2, the length will need to be kept constant to make sure only the variables indicated are investigated to ensure a fair test. ...read more.

Conclusion

Evaluation From my results table and graph I can see that my results that I collected are very reliable. I know this because my results table does not show any individual anomalous results this means that I did not have to leave any results out of my averages because they were anomalous. Also on the graph I can see that none of the averages plotted are anomalous because all the averages lie along the same straight line. During my experiment I have noticed several modifications I could make to improve on the Investigation if I was to repeat it. The first of these modifications would be the circuit that I would use. To be more accurate with my results I would use the circuit layout below: POWER SUPPLY 2 VOLTS AMMETER VOLTMETER WIRE METRE RULER Instead of connecting the voltmeter to the main circuit I would connect it to the wire which is being tested. I would do this so that the voltmeter is measuring the voltage of just the wire being tested and not the wires of the main circuit as well. To also improve on my results I would use a digital voltmeter instead of an analogue meter. I would do this because a digital voltmeter is a lot more accurate than an analogue because if the needle in the analogue voltmeter is bent then the readings given off will be false whereas a digital voltmeter does not rely on a needle or any other manual movements. The next modification I would make would be to use pointers instead of crocodile clips , I would do this because pointers would be more accurate. The pointers would be more accurate because the tips have a much smaller area than the crocodile clips giving a more accurate measurement of the length of wire. As well as making these modifications I would also improve my Investigation by testing the same wire but different widths of that wire. I would do this to expand on my Investigation. 1 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. An Experiment To Find the Resistivity of a Wire

    conductors is that they have free/valence electrons in the outer shell of their structure. All metals are conductors and they have a similar arrangement and as a result of the structure of all conductive atoms, the outer electrons are able to move about freely even in a solid and are in constant motion.

  2. A Resistance Investigation - Independent Variables

    To ensure that the experiment is fair I will be controlling - * The potential difference and keeping it the same number of volts through out the whole experiment. To do this I will adjust the rheostat and measure the potential difference on the voltmeter to ensure it is the same.

  1. Investigating how the resistance of Nichrome wire depends on its length

    Material of wire - Nichrome is an alloy mixture of Nickel and Chromium. Changing the size and proportions of these metal atoms can either increase or decrease the resistance. The variable I will be investigating: I will be using the length of the wire as my chosen variable.

  2. The resistance of a wire depends on certain factors. Some of these variables are ...

    However it is hard to keep the temperature exactly the same as the room temperature might change from day to day. It is essential to use a low voltage because it means a low current that will not heat up the wires.

  1. How does the Thickness of Wire Affect Resistance?

    My second graph, 'A Graph to Show how Area Affects Resistance' shows that the larger the area of a piece of wire, the less the resistance in the piece of wire. To find the area of the wire I used the equation: r2 and I averaged my resistance for each piece of wire to create one single line.

  2. Free essay

    Resistance in a wire

    which diameter of wire contains the largest range or resistance following the connection of voltage and amps. To extract this information I conducted a preliminary experiment in which I obtained 5 different thicknesses of wires, all attached to a wire bridge with a measurement of 100cm.

  1. An experiment to investigate the factors affecting the electrical resistance of a wire

    Besides, the apparatus that I begin with should be kept the same to avoid a tiny little difference of the resistance. Temperature is also a crucial factor that should be kept constant. However, it is very hard to maintain the same temperature for each test so I will wait for

  2. How the Resistance of a Wire is affected by Cross-Sectional Area

    I am not going to change the wires, ammeters and voltmeter. And I am also not going to change any of the other factors only the cross-sectional area of the subject wire.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work