• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An investigation into energy released during heating with a range of alcoholic fuels

Extracts from this document...

Introduction

An investigation into energy released during heating with a range of alcoholic fuels By Michael Finley, 11LY PLANNING This experiment is designed to determine which fuel out of the eight tested releases the most energy, to determine which is best. We will be using Ethanol, Propan-1-ol, Butan-1-ol, Pentan-1-ol, Hexan-1-ol and Octan-1-ol. METHOD In order to collect the results, I will need to heat up some water with a micro burner powered by each alcoholic fuel. I will need to weigh the fuel before and after the experiments to see how much of the fuel has been used up. I will also need to take the temperature of the water before and after the experiment to see how much the temperature changed. The two changes should allow me to see which fuel releases the most energy. I will do the experiment three times and collect the results, and take the average. ...read more.

Middle

= 756 KJ/Mol 2062 + 746 = 2808 KJ/Mol, which is the energy needed to break the bonds. Then I calculated the energy released when new bonds are made: 2 x C=O (2 x 740) = 1480 KJ/Mol 4 x O-H (4 x 463) = 1852 KJ/Mol 1480 + 1852 = 3332 KJ/Mol To calculate the energy balance, I did: 3332 - 2808 = 523 KJ/Mol Therefore the molar mass of Methanol was 523 KJ/Mol To find the molar mass of Ethanol, I had to do: Ethanol = 524 KJ/Mol + Balance I worked the balance out to be: 2406 - 1918 = 488 I then calculated the molar mass of all the fuels. Methanol = 524 KJ/Mol Ethanol = 524 + 488 = 1012 KJ/Mol Propan-1-ol = 1012 + 488 = 1500 KJ/Mol Butan-1-ol = 1500 + 488 = 1988 KJ/Mol Pentan-1-ol = 1988 + 488 = 2476 KJ/Mol Hexan-1-ol = 2476 + 488 = 2964 KJ/Mol ...read more.

Conclusion

REVISED DIAGRAM OF APPARATUS SECONDARY TESTS Fuel Starting temp/weight Finishing temp/weight Temp/weight change Ethanol 14�C/73.25g 37�C/71.91g 23�C/1.34g Octan-1-ol 18�C/73.49g 44�C/73.39g 26�C/0.1g We used a beer can with air holes in to insulate the Micro burner - we also moved the micro burner to 2cm away from the boiling tube rather than 6cm. RESULTS For this test (And the two before hand) I used 10cm3 of water. Test One Temperature Start Temp End Temp Change in Temp 19�C 32�C 13�C 20�C 31�C 11�C 22�C 32�C 10�C 18�C 29�C 11�C 18�C 30�C 12�C 19�C 30�C 11�C 18�C 28�C 10 Test Two Temperature Start Temp. Finishing Temp. Temp. change 16�C 39�C 23�C 15�C 42�C 27�C 14�C 50�C 36�C 18�C 44�C 26�C 15�C 50�C 35�C 19�C 60�C 41�C 13�C 46�C 33�C Test three Temperature Start Temp. Finishing Temp. Temp. change 11�C 34�C 23�C 11�C 33�C 22�C 11�C 37�C 26�C 11�C 34�C 23�C 16�C 41�C 25�C 14�C 28�C 14�C 14�C 36�C 22�C ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Organic Chemistry essays

  1. An investigation into the heat energy released upon burning different fuels

    I will repeat the process twice for some alcohols to get an average of its' results. It's always best to double-check! 10. If I do not keep the temperature rise the same, it won't be a fair test because some alcohols will not show the correct temperature after it has risen and will affect the accuracy of my results.

  2. This is a mini-project on fuel - topics include petrol and fossil fuels.

    By contrast, nuclear power stations produce electricity from fission reactions that work at a controlled rate. These are some things you might see: * Reactor core contains pallets of uranium oxide fuel held in fuel rods. Two thimble-sized pallets would produce enough electricity for a person for one year.

  1. The Energy Content Of Different Fuels

    This is because the more carbons there are per molecule of fuel, the larger the molecule will be. Therefore there will be more products; so on the other side of the equation there will be more moles of CO2 and H2O which will have been formed.

  2. Energy Transfer in Fuels

    As carbon dioxide atoms in the atmosphere keep heat within the atmosphere, I think this is going to be the case for this experiment. I predict that the higher the carbon atoms in the fuel, the less fuel the water will need to reach a 20?C rise.

  1. Hydrocarbons As Fuels.

    made to follow the curve V1V2V3, becoming richer and richer in A, the more volatile component. The liquid is becoming richer in less volatile component, B, and its composition follows the curve from L1 towards B. The longer the column, the more vaporisation followed by condensation steps will be achieved,

  2. Burning Fuels Investigation.

    All of these bonds are called hydrocarbon bonds. As the list of alcohols go down it will have a steady increase in energy released. These bonds only ever realease there energy when they are burnt because they split. This tells us the more bonds the more energy in the alcohol, and more energy to be released.

  1. Investigation into burning fuels.

    I have decided to test each fuel 3 times so I can produce averages for all of the fuels and reduce the affect of such anomalies because I will be able to clearly notice them. I have also decided that 1 minute is not long enough, so I chose to do a 2 minute trial.

  2. GCSE Chemistry Revision Notes - everything!

    This takes advantage of the different in boiling points in ethanol and water. Water boils at 100 °C whereas ethanol boils at 78 °C. The source of the sugar determines the type of alcoholic drink produced, for example, grapes produce wine and barley for beer.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work