• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An investigation into factors affecting the resistance Of a metal wire.

Extracts from this document...

Introduction

 An investigation into factors affecting the resistance

Of a metal wire

What is resistance?

Electricity is conducted through a conductor, in this case wire, and travels through free electrons. The number of free electrons depends on the material being used and the size of it. The more free electrons the better the conductor, i.e. it has less resistance. For example, gold has more free electrons than iron and, as a result, it is a better conductor. The free electrons are given energy and as a result move and collide with neighbouring free electrons. This happens across the length of the wire and thus electricity is conducted. Resistance is the result of energy loss as heat. It involves collisions between the fixed particles of the metal, free electrons and impurities. These collisions convert some of the energy that the free electrons are carrying into heat.

How is it measured?

We measure resistance in units called ohms (Ω).The resistance of a length of wire is calculated by measuring the current in the circuit and the voltage across the wire using mille ammeters and volt meters. The current must flow through the volt metre and mille ammeter. These measurements are then used in this formula:

 V = I / R                     where V = Voltage, I = Current and R = Resistance.

This can be arranged to   R = V / I

...read more.

Middle

Prediction

The longer the wire, the higher the resistance. This is because the longer the wire, the more times the free electrons will collide with other free electrons, the particles making up the metal, and any impurities in the metal. Therefore, more energy is going to be lost in these collisions (as heat).

Preliminary experiments

Before the real experiment I carried out some preliminary tests to check a few things. I checked how much power would be needed to keep the ammeter below 2 amps. I then did some tests involving the wire I would be testing. I found that if I use thick wire with a high voltage, the wire gets very hot and this would affect the resistance. So I then decided to use a thinner wire with a low voltage. The current was so low I decided to use a mille ammeter as it is more accurate. I had to make sure the current didn’t go above 200 mA at all lengths. If it did it would mean the current is too high.

  I fastened the wire to the meter ruler at three different points. I noticed that when I attached the crocodile clips the wire began to coil up. This would mean that the length I would be testing is inaccurate.

Proposed method

(Diagram on the page after this)

...read more.

Conclusion

The line of best fit clearly shows that the results followed the expected pattern very well. The points are very close if not touching the line. This shows how the results were directly proportional through out, as the gradient remained the same.

Evaluation

My experiment may have been slightly inaccurate, as there are a few minor details that I did not check. These include that the wire may not have been the exact length as it is very hard to get it exactly the right length just by looking at it. I could have used a more accurate measure and got it exact every time. Also the metre stick was old and may not have been accurate. Over night 2 of my wires had been taken so I had to replace them and start over. If I hadn’t the wires could have different resistances. All these potential problems could have very slightly affected the results but as it was so insignificant it didn’t matter too much.  The resistance of the crocodile clips and wires linking everything together would affect the results as their resistance would have added to the resistance of the nichrome wire.  think my experiment went very well as I did not have to repeat any lengths. At first I didn’t know how to set up the circuit but after I figured it out it was fairly easy.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    These resistors are said to be in parallel, and as before, it is possible to consider them as one single equivalent resistor R. To find this equivalent resistor, we exploit the fact from Ohm's law, that the potential difference across R1 and R2 is the same, we find this becomes:

  2. Marked by a teacher

    Factors Affecting The Resistance Of A Metal Wire.

    4 star(s)

    Therefore the more collisions there are, the more resistance there is, so a longer wire would increase resistance. Range of Measurements 7. I am going to take six readings of the current and the voltage. The six lengths I use will be 50cm, 100cm, 150cm, 200cm, 250cm and 300 cm.

  1. The aim of this investigation is to investigate the factors affecting the resistance of ...

    26 125 10 1 3.0 Constantan 26 125 10 2 3.0 Constantan 26 125 10 3 3.0 3.0 1.3 Constantan 28 125 10 1 2.8 Constantan 28 125 10 2 2.8 Constantan 28 125 10 3 2.7 2.8 1.4 Table 5 (Varying Length)

  2. Discover the factors affecting resistance in a conductor.

    Ohm's Law is a set of formulas used in electronics to calculate an unknown amount of current, voltage or resistance. I was named after the German physicist George Simon Ohm, who was born in 1787, and died in 1854. Ohms Law is defined as: "The amount of current flowing in

  1. Resistance of a Wire Investigation

    Hypothesis: When chlorophyll absorbs light energy, the light energy cannot be immediately used for energy conversion. Instead the light energy is transferred to a special protein environment where energy conversion occurs. This happens by using the energy of a photon to transfer electrons from a chlorophyll pigment to the next.

  2. Factors affecting Resistance of a wire

    Next, repeat the previous paragraph, except replacing "20cm" with "30cm", followed by "40cm", then "50cm", "60cm", "70cm", "90m", and finally "1.00m". Each time use 3V, 6V and 9V on the repeats. This is our preliminary experiments done. It is important that you turn off the power supply in between readings because otherwise the wire will become too hot.

  1. Investigate one or more factors affecting the resistance of metal wires

    > Type of material - alloys have a higher resistance than pure metals (like copper). > Temperature - hotter wires have more resistance than cooler wires. In my preliminary work, I will need to decide factors to investigate the resistance of a wire which are easy to measure accurately, and

  2. An investigation into the factors affecting the resistance of a wire.

    George Ohm discovered that a circuit sometimes resists the flow of electricity and called this resistance. The resistance of a circuit is measured in ohms, named after the Greek letter, Omega and is obtained using the rule he devised, ohms law.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work