• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An Investigation into the effect of thelength of a wire on its resistance.

Extracts from this document...


Heather Oakley

An Investigation into the effect of the length of a wire on its resistance

Resistance is the ability of a substance to resist, or oppose, an electric current in a conductor. This resistance makes the electrons of a current give up some of their electrical energy. This energy is converted to heat, light and other energies. Resistance can be calculated by dividing the potential difference (p.d.) across its ends by the current passing through it:

Resistance (R) =   p.d. (V)  h

                    Current (I)

Resistance is measured in Ohms (Ω). One ohm is the resistance of a conductor through which a current of 1 amp passes when the p.d. between its ends is 1 volt.

When calculating the resistance, the p.d. is measured in parallel by a voltmeter and the current is measured in series using an ammeter.

There are several variables which affect the resistance of a wire.

Temperature of wire

If a wire is hot then resistance is increased because electrons find it hard to make a route through the vibrating particles. This diagram shows this theory:

The red line represents the current travelling through the wireimage00.png


To stop the temperature of the wire from influencing my results, I am going to put a protective thermistor in the circuit to stop it from getting too hot.

Wire Thickness

Thicker wires have less resistance than ones with a smaller cross-sectional area because the current finds it harder to make a route through.

...read more.


The protective resistor must not be touched as it will heat up significantly during the experiment.

Pilot Test

Before the main method was carried out, a preliminary experiment was carried out to determine whether a thick or thin wire should be used and to decide what the range of lengths should be for the nichrome wire.

After doing this preliminary experiment, it was decided that nichrome wire lengths fewer than 10cm should not be used as the wire overheated considerably and almost melted. Also, it was decided that the thicker of two wires should be used as this would present me with clearer results.


As the length of the wire increases, the number of collisions between electrons and the molecules of the wire will increase because the current has further to travel. These collisions will result in an electrical energy loss (the electrical energy will become heat). The current will decrease because fewer electrons will be able to travel through as the wire gets longer. The voltage will increase because more push will be needed to get the current round the circuit. As the voltage increases and the current decreases, the resistance will increase.

...read more.


Another variable that could have altered was the temperature of the wire. As I never measured the temperature of the wire or of the room temperature, I cannot be sure that they stayed constant. This did not obviously affect the experiment severely because the results followed my prediction and scientific evidence very well.

More experiments could be done to investigate the other variables that affect the resistance of the wire:

  • Thickness of wire. Wires with different thicknesses could be tested to find the effect on the resistance. In this experiment, the length, wire material and temperature should all be kept constant. I predict that the resistance would decrease as the wire thickness increases showing that the resistance is inversely proportional to the diameter of the wire.
  • Material of wire. Different types of wires, such as nichrome, copper and aluminium could be used in place of the nichrome wire on the circuit I made. The wire length, thickness and temperature should all be kept constant. In this experiment, the resistivity of different materials will affect the resistance. Using the equation        = resistance x CSA/ length, the resistivity of each material of wire could be calculated. (CSA = cross sectional area)image03.png
  • Temperature of wire. Resistance could be tested in the same circuit at different temperatures. The length, width and material of the wire should all be kept the same. I predict that as the temperature increases, the resistance will decrease because current does not pass through hot wires as easily.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    To investigate how the resistance, R, of a length of wire, l, changes with ...

    4 star(s)

    I will try to make sure there are no kinks in the wires as this increases the thickness of the wire. I shall measure the diameter from a number of places on the wire so that I can see that the wire is of one diameter on the length.

  2. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    until I found the point when my electromagnet saturated, all the domains were pointing in the same direction, in the graph this would be when the line of best fit flattens to become a horizontal line. Further work To further my investigation I would still keep to the same aim,

  1. Resistance of a Wire Investigation

    This could be down to an error in the measurement of the wire or a temperature rise. The two results for 100cm are the same, and it is near to the manufacture's line, so this is the most accurate point.

  2. An in Investigation into the Resistance of a Wire.

    to the current and I could have included a switch in my circuit so that I can break the circuit quickly if I needed to. I made sure that my bag was underneath the table as well so they are not in the way of other people.

  1. An experiment to find the resistivity of nichrome

    It would have been ideal for me to have used a digital voltmeter of range 0-2V but this type of voltmeter was unavailable. The only digital voltmeters that were available for me to use had either a voltage range from 0-1V or from 0-5V or from 0-20V.When I did a

  2. Resistance in a Wire Investigation

    100 010 Analysis and Conclusion : The graph is a straight line through the origin, which means R is directly proportional to L. This means that if the length is 40cm, and resistance is 4ohms, then if length is doubled to 80cm, resistance also doubles to 8ohms.

  1. Resistance of a wire - a number of experiments were carried out to determine ...

    The valence electrons are free to travel through the structure and are no longer situated in the outer shell of any one atom and are consequently called delocalised electrons, frequently identified as the 'sea of electrons' The elimination of the electrons leaves layers of cations behind.

  2. An investigation into the effect of changing the length of a wire on the ...

    Ohm's Law can be abbreviated to a simple formula triangle: In a circuit, you would usually measure the voltage and current using a voltmeter and an ammeter and then work out the resistance afterwards using this formula triangle. You can measure the resistance straight away by using an ohmmeter, but

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work