• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An Investigation into the factors that affect the rate of the reaction between magnesium ribbon and dilute hydrochloric acid.

Extracts from this document...

Introduction

An Investigation into the factors that affect the rate of the reaction between magnesium ribbon and dilute hydrochloric acid Plan I predict that the higher the concentration of the hydrochloric acid, the higher the rate of the reaction. If the concentration of the hydrochloric acid doubles, the number of particles in the hydrochloric acid would double also. Therefore, the number of collisions between the particles will double so the rate would double also. This means that the rate of the reaction is directly proportional to the concentration of the hydrochloric acid. I worked this out by using the collision theory, where if you change the concentration, the rate changes in the same proportion. So the higher the concentration of the HCL the faster the reaction would take place, so the faster the magnesium ribbon would disappear. We can test if this prediction is correct for this reaction by measuring the rate of the reaction for a series of different concentrations. However we have to make sure we have a fair test by keeping all the variables the same except for the one we're studying. Final Method Before you start the experiment, the safety precautions need to be taken into concern first. A lab coat should be worn to protect yourself from the HCL you will be testing and any other chemicals in the lab, which could harm you. Safety glasses need to be worn at all times also. All other rules of the lab should be taken into concern before you start the experiment also. Firstly you need to set up the apparatus, which include: * Clamp & clamp stand * 100ml syringe * Two 100cm� cylinders * Side arm conical flask * Small beaker * Bung * Delivery Tube * Stop Clock Using a clamp and a clamp stand attach a 100ml syringe to it. ...read more.

Middle

0 0 5 10 10 17 15 23 20 26 25 28 30 31 35 33 40 35 45 37 50 38 Preliminary Experiment 4 Preliminary Experiment 5 2cm� HCL 1cm� HCL 3cm� Distilled Water 4cm� Distilled Water Time (secs) Amnt Hydrogen produced (cm�) 0 0 5 4 10 8 15 12 20 14 25 17 30 19 35 20 40 21 45 22 50 22 Time (secs) Amnt Hydrogen produced (cm�) 0 0 5 1 10 1 15 1 20 1 25 1 30 1 35 1 40 1 45 1 50 1 Fair Test To achieve a fair test in the experiment we need to list the factors, which could have an effect on the rate of the reaction in this particular experiment. These are the factors: * Temperature - kept the same at room temperature * Concentration of HCL- varied * Volume of HCL - varied * Size of Mg ribbon - kept the same at 10cm * Volume of distilled water - varied * Presence of catalyst - none Obtaining Evidence I repeated each experiment 3 times then I took the average. This was to make my experiment more accurate so it would be easier to test my prediction. Here are the results of my experiments: Expt 1: 50cm� HCL Expt 2: 40cm� HCL 0cm� Distilled Water 10cm� Distilled Water Time (secs) Hydrogen produced (cm�) 1st 2nd 3rd 2 25 9 23 4 54 27 54 6 65 48 78 8 74 67 88 10 79 77 91 12 79 84 92 14 79 86 92 16 79 86 92 18 79 86 92 20 79 86 92 22 79 86 92 24 79 86 92 26 79 86 92 28 79 86 92 30 79 86 92 Time (secs) ...read more.

Conclusion

The closer together they are, the more often the particles collide. The more often they collide, the higher the chance of a reaction between the magnesium ribbon and the hydrochloric acid. If you double the concentration of the hydrochloric acid , the number of particles in the hydrochloric acid would double also. Therefore, the number of collisions between the particles will double so the rate would double also. This means that the rate of the reaction is directly proportional to the concentration of the hydrochloric acid. I worked this out by using the collision theory, where if you change the concentration, the rate changes in the same proportion. The graph gives us a good device to prove that if you double the concentration the rate doubles also. Sources of error and limitations * I assumed that the room temperature was constant throughout the experiments. * The stop clock was unreliable and sometimes inaccurate because the second - hand was loose and would move if it were tapped. * The measuring cylinders used to measure the distilled water and HCL solution was only accurate to �1ml, so they're slightly inaccurate. * I washed and dried all our equipment but during the experiment dirt could've entered the side arm conical flask or water droplets could've been left in the flask. * When the reaction takes place bubbles of hydrogen are given off, which might stay around the magnesium, which therefore reduces the surface area of the magnesium and so the acid cannot react properly so this affects the results. * I could have stirred the solution more with a spoon because if this is not done properly it can lead to inaccurate results. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Marked by a teacher

    The Effect of Concentration on the Rate of Reaction between Magnesium [Mg] and Hydrochloric ...

    4 star(s)

    As the reactant particles will also move more quickly the frequency of the collisions also increases. If the temperature is low the reactant particles consist of less energy. So when particles are heated they gain more energy. As they gain more energy this enables them to move around faster, this

  2. Marked by a teacher

    For my experiment I am finding out the effects on the reaction rate when ...

    3 star(s)

    I would also maybe clean the magnesium strip next time with distilled water or try rub of any oxidation and lumps of other elements o prevent contamination so that I am confident the magnesium strip does not have any other elements that could be catalysts or could affect the rate of reaction.

  1. Investigating the Rate of Reaction Between Hydrochloric Acid (Hcl) and Magnesium (Mg).

    H2, they both have 1 mole, the figure is the same for the moles of H2. 2.95x10-3. 1 mole oh hydrogen takes up 24000cm3 in volume. Therefore, 0.00295 will occupy: 24000 x 0.00295 = 70.8cm3 This means that no matter what the temperature, the maximum amount of hydrogen which can

  2. Rates of reaction between Magnesium and HCl.

    The thirst fastest reaction was when the concentration of the hydrochloric acid was 0.8M, as the amount of hydrogen produced in 90 seconds was 13.5cm�. The fourth fastest reaction was when the concentration of the acid was 0.7M, with a total of 10.5cm� of hydrogen produced.

  1. The Iodine Clock Investigation

    * Final reaction mixture - this should be handled with care as it contains a mixture of unreacted substances as well as iodine. It should be treated as having the same hazardous properties as above, but also containing iodine which although in this form is not particularly hazardous, has the ability to stain skin and clothing.

  2. An Investigation into how concentration affects the rate of reaction between magnesium and hydrochloric ...

    Also (and more importantly), the collisions are more energetic. More collisions have an energy greater than the activation energy, so the reaction is faster. Concentrations Moles are a way in which concentration can be measured; the higher the concentration the higher the density of atoms in a set volume.

  1. Investigating the rate of reaction between Magnesium Ribbon and Hydrochloric Acid.

    I will then fill one of the 100cm3 beakers with hydrochloric acid and the other beaker will be filler with distilled water. I will also cut a 10 cm strip of magnesium ribbon, and weigh it with the balance. Having taken it all to the bench where I am working

  2. An Investigation: Factors That Affect The Rate Of Reaction between Calcium carbonate and Hydrochloric ...

    The particles available will have a large range of energies, as we are measuring the volume of carbon dioxide released. We can present the energy each particle has on a graph called the Maxwell-Boltzmann Distribution. For example the Graph 1shows the distribution curve, by showing the how much energy the particles have at every stage of the reaction rate.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work