• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An investigation of the effect of a named abiotic factor upon Marram grass distribution in a sand dune system

Extracts from this document...

Introduction

An investigation of the effect of a named abiotic factor upon Marram grass distribution in a sand dune system Aim: to investigate the effect of a named abiotic factor upon Marram grass distribution in a sand dune system Background information: Marram grass is a xerophytic plant, meaning that it is a plant that is adapted to living in a dry arid habitat. Therefore it is most likely to be found on sand dunes, where the water is minimal and also where, closer to the shore (if the sand dunes are by the sea), there is a higher salt content, lowering the water potential. Marram grass has many adaptations to living in the sand dunes, for example its leaf blades curve with the stomata on the inside, to reduce evaporation due to heat or wind (transpiration), also this provides a moist microclimate around the stomata (ref. Biozone international). Marram grass blades also have leaf hairs, which hold moist air around the leaf to prevent evaporation. Marram grass has an extensive root system to gain as much water as possible from the water deficient habitat. Furthermore Marram grass has a thick waxy cuticle, reducing water loss by evaporation and also, because it is shiny, reflects some of the heat. Sand Dune Succession Sand is deposited by the sea on the shore, and the sand is blown by the wind away from the sea, an object on the beach causes eddy currents and thus the sand is deposited around the object, the sand dune has began. ...read more.

Middle

For this investigation, I have selected to use quadrat sampling, as it is the most useful at determining populations, and also it allows for a systematic approach. Upon arriving at the sand hills, I shall get a one meter squared quadrat. I will place the quadrat at the beginning of a white dune, ignoring a pioneer dune, as there aren't likely to be any Marram grass populations. When I have placed my quadrat down, I shall use a temperature probe to record the temperature, I shall place the probe into the grass as to get the exact temperature, that Marram grass is living in. Then I shall estimate the population of Marram grass in that quadrat in percentages, for example if the quadrat is half full with Marram grass, the estimate is going to be 50%. Unfortunately, I cannot separate the quadrat into fractions, because the holes in the fractions (made by a string) would be too small for the Marram grass to fit through, nevertheless it would mean that I would get a more accurate estimate. I shall record my estimate in a results table. Subsequently I shall flip the quadrat to the right, whilst keeping the right side firmly on the floor, and flipping the left side, repeating the above procedure, finally I shall flip to the right again and repeat the method. ...read more.

Conclusion

? 3 2 ? ? 3 3 ? ? 4 1 ? ? 4 2 ? ? 4 3 ? ? 5 1 ? ? 5 2 ? ? 5 3 ? ? 6 1 ? ? 6 2 ? ? 6 3 ? ? ... ... ... ... Null hypothesis I predict that the temperature will not affect the Marram grass distribution, due to the reason that as the plant is xerophytic, it is adapted to living in harsh environments, for example it curls up to stop transpiration, it has hairs which hold moist air around the plant to stop evaporation and also it has a reduced number of stomata meaning that there is not going to be as much evaporation, all to counter the effect of temperature so therefore it will occupy the same area even when the temperatures vary. So the temperature will not be closely related to the growth rate of the grass. This means that the grass will grow evenly throughout the sand dune system, in places where the grass is exposed to a lot of sun and in places where there is a lot of shade. I predict that the spearman rank test will not show any strong correlation between the variables of temperature and growth distribution, and that a scatter graph and particularly a kite graph will both have no gradients, as the temperature has not effect. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    An investigation into the effect of a germination inhibitor on the germination of seeds.

    3 star(s)

    26 13 2 0 0 47 45 20 2 0 0 Total 135 58 15 0 0 0 210 123 84 12 0 0 249 175 112 15 0 0 264 222 146 19 0 0 * Concentration of tomato inhibitor in %.

  2. Photosynthesis Investigation

    And the leaf has not got one or more of the factors that needs for a plant to photosynthesise For this experiment I used a leaf from a plant, which had been photosynthesising and has all the four factors needed to photosynthesis so the colour patches on the leaf showed the colour of blackish bluish.

  1. The investigation is aiming to look at transpiration.

    when the stomata are open and the internal tissues of stems and leaves are in contact with the atmosphere. Well over 90% of the total loss from leafy shoot is due to stomatal transpiration. Mechanism of opening and closing of stomata The opening and closing of the stomata control the flow of gases in and out of the leaves.

  2. Three separate experiments which are to be carried out to investigate a plant's unique ...

    I believe that if my results were perfect, the bubble would have travelled exactly twice as far. This is because, the amount of water lost through the leaves is directly proportional to the number of stomata that the leaf has.

  1. Discuss the various adaptations of vertebrates that enable them to live in marine conditions.

    food, and often murky environment. Baleen whales have moderately good eyesight, but have a limited field of vision and cannot see out of water. Their food is passive, and some of them dive below the level of light penetration. The food of toothed whales and pinnipeds is active, and they have excellent vision, both below and above water.

  2. Experiment to Compare Stomata Density in Different Dicotyledonous

    The pie chart below shows that just 6% of the total stomata is located on the upper epidermis and 94% of the total stomata are located on the lower epidermis. The pie chart is supported by both graph 1 and 2 (see foot note of the graph for numbering)

  1. Investigating the abiotic factors that affect the size of Ivy leaves in shaded and ...

    + 2H2O The hydroxide ions are 'left behind' from the hydrogen ions taken up in the reduction of NADP to NADPH. The removal of the electrons from hydroxide ions by the photosystem II results in the by-product oxygen. Thus the reactions of the light-dependent stage of photosynthesis provide a source of reducing power (NADPH)

  2. An Investigation into Species Diversity with distance along a Pingo.

    Pingoes are glacial features, which occur by the uplift of the land and subsequent collapse of a mound. As a result the base of the pingo will have greater moisture content because the soil is closer to the water table.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work