• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An investigation of the factors which affect the reaction of acid rain on limestone.

Extracts from this document...

Introduction

An investigation of the factors which affect the reaction of acid rain on limestone Aim: To investigate the factors which affect the reaction of acid rain on limestone. Background Knowledge / Scientific Knowledge: * Acid reacts with limestone to produce Carbon dioxide. (CO2 is the product of the reaction). * Temperature:- As more heat is given to the molecules of the reactants, they gain kinetic energy, and move more quickly, and violently. * Acid rain causes the erosion or weathering of limestone. * Equation for Hydrochloric acid is: HCl * Equation for Limestone is: Ca CO3 * The reaction between limestone and acid rain is exothermic - it gives out heat. * Limestone is a calcium carbonate, and it is alkali. * Greater surface area = quicker reaction, because there are more surfaces for the other reactant to work on. The Collision Theory: A reaction occurs when the molecules of two or more reactants collide into one another. Then the reaction takes place. After the collision and subsequent reaction has taken place, 'products' are produced. In the case of this experiment carbon dioxide is the product of the reaction between limestone and acid rain - basically hydrochloric acid and water. The equation for this reaction is 2HCl + CaCO3 -> CO2 + CaCl2 + H2O Prediction 1. ...read more.

Middle

* make sure that none of the gas escapes from the syringe. * make sure that none of the acid is added to the limestone, before the timed period. * make sure that the acid is at the correct temperature, before starting the experiment. If not, then my results will be inaccurate. * make sure that I replace each piece of limestone before each experiment. * make sure that all the equipment I use is in the correct, and in the most efficient state before starting the experiment. Results for method 1: Temperature Mass before/g Average/g Mass after/g Average/g Concentration /�C 1 2 3 1 2 3 of acid/M 10 | 0.26 0.26 0.26 | 0.25 | 0 0 0 | 0 | 0.5 10 | 0.42 0.41 0.43 | 0.42 | 0.41 0.41 0.41 | 0.41 | 1.0 10 | 0.28 0.26 0.27 | 0.27 | 0.24 0.25 0.24 | 0.24 | 2.0 20 | 0.37 0.42 0.41 | 0.40 | 0.37 0.38 0.36 | 0.37 | 0.5 20 | 0.41 0.40 0.41 | 0.41 | 0.40 0.38 0.39 | 0.39 | 1.0 20 | 0.24 0.25 0.24 | 0.24 | 0.15 0.18 0.20 | 0.18 | 2.0 30 | 0.21 0.23 0.25 | 0.23 | 0.25 0.22 0.23 | 0.23 | 0.5 30 | 0.25 0.26 0.28 | 0.26 | 0.17 0.16 0.18 | 0.17 | 1.0 30 ...read more.

Conclusion

I believe this because the rate of reaction doubles every 10�C rise in temperature, as the molecules gain more kinetic energy, and will collide more. My results prove this as you can see between 10 and 30�C. My results in Table 2 show that with a greater concentration of acid the greater the amount Carbon dioxide is produced and therefore a greater reaction has taken place. In method 1 the reaction doubled when the concentration of the acid doubled, but this is not happening in method 2 as the volume of Carbon dioxide has only slightly increased when the molarity of the acid has been doubled. I can offer no explanation for this. Method: For this experiment I had to modify the method as there was not enough pressure produced by the carbon dioxide to move the syringe, so I had to use the beehive method instead. This method worked reasonably effectively, but occasionally before starting the experiment an air bubble went into the measuring cylinder, so I had to re-dip the measuring cylinder - that is probably why there are some inaccuracies in the results, especially in the results when temperature = 10�C / Molarity of acid = 1.0. Summary: Method 1 is the more accurate method although it is much more complicated than method 2. There are more things to observe and ensure that they are correct. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. The effect of Acid Rain on Seed Germination.

    ? ? ? ? ? 2 70 ? ? ? ? ? ? ? ? ? ? 2 60 ? ? ? ? ? ? ? ? ? ? 5 50 ? ? ? ? ? ? ? ? ? ? 5 40 ? ? ? ? ? ?

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    present in 100 grams of Spinach. This is not the expected result of 4 mg's, which is what the many textbooks suggest the answer should be. The reason this experiment suggests there is such a low concentration of iron (II)

  1. To investigate the factors affecting the volume of carbon dioxide produced when a carbonate ...

    Precise data must be gathered. This means that as many decimal places or significant figures as possible must be used.

  2. To investigate the effect of concentration on the temperature rise, heat evolved and heat ...

    Three graphs are drawn of Volume of NaOH against temperature for the three concentrations, 1 M, 2 M & 3 M. One graph is of concentration against temperature change, one graph is of concentration against heat evolved and another graph is of concentration against heat of neutralization.

  1. To investigate three factors that affect the rate of cooling a liquid and to ...

    Results Tables Experiment 1 No Insulation Corrugated Card Woollen Lagging 0 seconds 40 seconds 80 seconds 120 seconds 160 seconds 200 seconds 240 seconds 280 seconds 320 seconds 360 seconds 400 seconds 440 seconds 480 seconds 520 seconds 560 seconds 600 seconds 640 seconds 680 seconds 720 seconds Experiment 2

  2. To investigate the factors that affect the amount energy produced in neutralisation reactions.

    Ethanoic acid. (CH3CO2H) Common strong acids include: Hydrochloric acid (HCl) Nitric acid (HNO3) Sulphuric acid (H2SO4) Common weak acids include: Citric acid (H3C6H5O7) Ethanoic acid (CH3COOH) (vinegar) Alkalis and Bases A soluble base is something which produces OH- ions in water.

  1. Acid Rain

    Since there are many solutions to the acid rain problem, leaders have a choice of which options or combination of options are best. As individuals people should invest in energy-efficient appliances, avoid the use of air conditioners, turn off the heater in the evenings, if they have a pool cover

  2. Rates of Reaction

    This can be done via increasing the temperature, however my aim is to see the effects of concentration on the rates of reaction, therefore Temperature will be a control variable in the experiment, explained later. During the experiment I will have to use equal sized marble chips because the surface area can affect the results attained.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work