• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

An investigation to find out how the concentration of acid affects the rate of reaction between hydrochloric acid and calcium carbonate (marble chips).

Extracts from this document...

Introduction

An investigation to find out how the concentration of acid affects the rate of reaction between hydrochloric acid and calcium carbonate (marble chips) Planning The aim of my investigation is to find out how changing the concentration of acid affects the rate of the reaction between CaCO3 and HCl. To make my experiments fair tests, I will only change one variable: the concentration of the acid. I will have to keep the volume of the acid, the mass and size of the marble chips and the temperature of the acid the same in all my experiments to insure a fair test, because by changing any of the above I will change the conditions and therefore the results will be inaccurate and the rate of reaction will be affected. The products of the reaction between the hydrochloric acid and the marble chips are calcium chloride, water and carbon dioxide. CaCO3 (s) + 2HCl(aq) CaCl2 (l) + H2O (l) + CO2 (g) As CO2 is a gas it will escape as the reaction is taking place, therefore there will be a mass loss. Following from that I have decided to monitor this mass loss by weighing my components on a set of scales as the reaction takes place, the conical flask with the reactants will be constantly on the scales and I will be reading the mass of the display every 10 seconds. I will use 5 different concentrations of the acid. The strongest concentration will be 2 molar and the weakest will be 0.4 molar. The different concentrations will be obtained by adding a certain volume of water to the acid to dilute it this will reduce the concentration. Concentration of the acid / molar Volume of acid / cm� Volume of water / cm� 2.0 1.6 1.2 0.8 0.4 100 80 60 40 20 0 20 40 60 80 I predict that the higher concentration of the acid will have a much faster rate of reaction than the weaker solution, i.e. ...read more.

Middle

goes down proportionally to the decrease in concentration. Every time the concentration decreases by 0.4M, the total mass loss decreases by about twice that, by 0.8 (on average). Acid concentration/Molar Total Mass Loss/g Difference in mass loss/g 2.0 3.70 0.76 1.6 2.94 0.88 1.2 2.06 0.80 0.8 1.26 0.79 0.4 0.49 These results are not very accurate as some times the difference is bigger than 0.8g and some times it is smaller. However they all seem to be quite near 0.8g. You can see it illustrated on the graph as the distance between the lines at 500 seconds are about equal. Following from this we can say that if the difference between the concentrations is 0.8M, the difference between the total mass losses will be about 1.6g. 2.0M - 3.70g 3.70 - 2.06 =1.64g 1.2M - 2.06g At every concentration of the acid the rate of reaction is fast at first and then it slows down as the acid is diluted by water produced by the reaction of HCl and marble chips (the curved lines of the mass loss illustrate this). Concentration - 1.2M Mass Loss/100 sec - 1.18g Rate of reaction/sec = 1.18/100 = 0.018 Mass Loss/200sec - 1.72g Rate of reaction/sec = 1.72/200 = 0.0086 The rate of the reaction is directly proportional to the concentration of the acid, i.e. doubling the concentration doubles the rate of the reaction When the concentration is 1.6M the mass loss after 2 minutes (120 sec) is 1.83g. When the concentration is 0.8M the mass loss after 2 minutes (120 sec) is 0.91g. 1.6/0.8 = 2 0.01525/0.007583 = 2.01 This illustrates that the concentration is directly proportional to the rate of the reaction. e.g. When the concentration is 2M the mass loss after 6 minutes (360 sec) is 3.57g. When the concentration is 1.2 M the mass loss after 6 minutes (360 sec) is 2.01g. 2/1.2 = 1.67 0.00991/0.00558 = 1.78 From my results I can conclude that the higher is the concentration of the acid, ...read more.

Conclusion

3.51 3.63 2.71 2.92 1.92 2.09 1.23 1.29 0.44 0.54 380 3.56 3.60 2.76 2.93 1.94 2.10 1.23 1.29 0.44 0.54 400 3.60 3.62 2.77 2.95 1.96 2.11 1.23 1.29 0.44 0.54 420 3.62 3.64 2.80 2.97 1.98 2.10 1.23 1.29 0.44 0.54 440 3.65 3.66 2.82 2.98 1.99 2.10 1.23 1.29 0.44 0.54 460 3.67 3.70 2.83 3.00 2.00 2.10 1.23 1.29 0.44 0.54 480 3.70 3.70 2.87 3.00 2.01 2.10 1.23 1.29 0.44 0.54 500 3.70 3.70 2.87 3.00 2.01 2.10 1.23 1.29 0.44 0.54 Average of 2 trials of mass loss at different acid concentrations Concentration/Molar Time/sec 2 1.6 1.2 0.80 0.40 10 0.30 0.13 0.07 0.10 0.07 20 0.64 0.27 0.23 0.18 0.09 30 0.92 0.51 0.31 0.28 0.14 40 1.16 0.71 0.48 0.38 0.16 50 1.37 0.90 0.63 0.47 0.18 60 1.58 1.06 0.75 0.57 0.21 70 1.76 1.23 0.87 0.64 0.24 80 1.93 1.37 0.97 0.71 0.26 90 2.07 1.50 1.09 0.77 0.29 100 2.23 1.61 1.18 0.82 0.31 110 2.34 1.73 1.25 0.88 0.33 120 2.46 1.83 1.32 0.91 0.36 140 2.66 2.02 1.45 0.98 0.38 160 2.82 2.12 1.56 1.03 0.40 180 2.95 2.26 1.65 1.09 0.43 200 3.06 2.37 1.72 1.12 0.45 220 3.16 2.46 1.78 1.16 0.47 240 3.24 2.55 1.82 1.18 0.48 260 3.31 2.60 1.88 1.19 0.49 280 3.37 2.66 1.92 1.22 0.49 300 3.43 2.70 1.94 1.24 0.49 320 3.48 2.75 1.96 1.24 0.49 340 3.51 2.78 1.99 1.26 0.49 360 3.57 2.82 2.01 1.26 0.49 380 3.58 2.85 2.02 1.26 0.49 400 3.61 2.86 2.04 1.26 0.49 420 3.63 2.89 2.04 1.26 0.49 440 3.66 2.90 2.05 1.26 0.49 460 3.69 2.92 2.05 1.26 0.49 480 3.70 2.94 2.06 1.26 0.49 500 3.70 2.94 2.06 1.26 0.49 Rates of reaction/sec Rate of Reaction Concentration of acid/M At 50 Sec At 100 sec At 200 sec 0.4 0.0036 0.0031 0.0023 0.8 0.0093 0.0082 0.0056 1.2 0.0126 0.0118 0.0086 1.6 0.0180 0.0161 0.0119 2 0.0274 0.0223 0.0153 Tamara Tsallagoava Set A1 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Marked by a teacher

    Marble Chips and Hydrochloric Acid.

    4 star(s)

    This is the calculation used to determine the amount of CO that will be produced, by the experiment. Step 1 Firstly, we must work out how much Calcium Carbonate is equal to 1 mole. CaCO = Ca C CO 40 + 12 + 16 + 16 + 16 = 100

  2. Free essay

    How does Concentration affect the rate of reaction between Hydrochloric Acid and Calcium Carbonate

    This is also backed up by the rate of reaction graph, which shows that the 100% Hydrochloric Acid solution's rate of reaction was almost 6 times greater than the 20% solution. The conclusion I have reached is what I predicted before the experiments had taken place.

  1. Chemistry Cwk Rates of reaction: Investigating One Factor Which Affects How Fast Calcium Carbonate ...

    Results for 50ml of 2M acid and 2g of chips: Time (Seconds) Carbon dioxide (cm�) Time (Seconds) Carbon dioxide (cm�) 5 5 70 56 10 8 75 60 15 10 80 65 20 15 85 71 25 17 90 75 30 22 95 81 35 25 100 83 40 27

  2. How Concentration affects the rate of reaction.

    I have also researched on some websites- http://www.ucdsb.on.ca/tiss/stretton/chem2/rate04.htm- I used this Website to help me explain the collision theory http://encarta.msn.co.uk/find/Concise.asp?z=1&pg=2&ti=761571156&hs=%22activation+energy%22 - I used this Website to help me explain the activation energies. From what I know about the collision theory, I can predict what will happen.

  1. Measuring the Rate of Reaction between Hydrochloric Acid and Calcium Carbonate

    and one of the measuring cylinders containing hydrochloric acid into the conical flask. - I will then set up the gas syringe and make sure that it is pushed in fully. Adjust the height of the syringe making sure that it is able to reach the conical flask.

  2. The Iodine Clock Investigation

    of Results Now that all of the experiments have been conducted, the results gained that have been displayed in the form of tables and graphs can now be analysed. It may now be possible to draw certain conclusions from the results about the nature of the reaction that has been investigated.

  1. How does the concentration of HCl affect the rate of reaction with CaCO3?

    the concentration of hydrochloric acid, we increased the number of hydrochloric molecules in the buckler flask, allowing more collisions with the marble molecules, therefore creating more products at a quicker rate each time! Evaluation My experiment went very well, we got some consistent results and our method was quite reliable and accurate.

  2. Investigating how the concentration of acid affects the rate of reaction between hydrochloric acid ...

    The volume of HCl used will be kept constant. We will measure the HCL using graduated pipettes. I will ensure all equipment (graduated pipettes, conical flasks, etc) will be thoroughly cleaned after each experiment to ensure that no cross contaminations take place. Preliminary Experiment For Rates Of Reaction The aim of my preliminary experiment was to determine the appropriate

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work