• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12

An investigation to show the correlation between the number of different species found, and the B.M.W.P score of the environment.

Extracts from this document...

Introduction

Matthew Stone Introduction For an explanation on BMWP, refer to appendix 1. For background information on Osmington Bay, refer to appendix 2 Plan Hypothesis "The BMWP score will increase with the number of species found." This is because the larger the number of species, the more BMWP score there will be for the sample. With correlation to the environment, species that have a higher affinity for oxygen have a higher BMWP score. Therefore, if there is only one species in a riffle (a highly aerated and fast flowing part of the river, meaning high amounts of oxygen dissolved and low amounts of organic pollution), the BMWP score of the area will be higher than that of a pool (stagnant, little aeration, and large amounts of organic pollution (eutrification of the organic pollution causes low oxygen content)) with many species: Environment BMWP Score High aeration, high number of species High High aeration, few number of species Medium Low aeration, large number of species Medium Low aeration, few number of species Low Statistical Support Because I am trying to show the relationship between to different pieces of data, I will use the Spearman's Rank Co-efficient. Statistically, this will show whether the number of species found is significantly correlated to the BMWP score. I will therefore need to collect over 12 sets of data to make statistically analysing the data productive. ...read more.

Middle

* Wear appropriate clothing to be safe in river (stay dry, wont slip over on the bed), on road (so vehicles can see you). Results site number 1.1 1.2 Riffle/Pool Riffle Pool Description Bottom mill Width (M) 3.45 4.1 Depth Spacing (M) 0.86 1.03 depth1 (M) 0.16 0.15 depth2 (M) 0.17 0.21 depth3 (M) 0.15 0.19 dissolved oxygen (mg/l) 6.50 6.4 Velocity (M per Sec) 0.46 0.31 pH 7.50 7.5 Temp (�C) 10.2 10.2 Average sediment size (cm) 7.56 1.18 Number of species 6 5 BMWP Score 29.5 20 site number 2.1 2.2 Riffle/Pool Riffle Pool Description Width (M) 9.570 3.663 Depth Spacing (M) 2.390 0.910 depth1 (M) 0.280 0.230 depth2 (M) 0.110 0.250 depth3 (M) 0.130 0.210 dissolved oxygen (mg/l) 5.600 6.200 Velocity (M per Sec) 0.348 0.170 pH 7.500 7.500 Temp (�C) 10.500 10.220 Average sediment size (cm) 3.62 2.08 Number of Species 6 3 BMWP Score 24.5 18.5 site number 3.1 3.2 Riffle/Pool Riffle Pool Description Width (M) 5.50 5.30 Depth Spacing (M) 1.38 1.33 depth1 (M) 0.08 0.24 depth2 (M) 0.19 0.21 depth3 (M) 0.08 0.14 dissolved oxygen (mg/l) 4.80 4.40 Velocity (M per Sec) 0.53 0.14 pH 7.50 7.50 Temp (�C) 10.20 10.50 Average sediment size (cm) 6.36 9.00 Number of species 4 8 BMWP Score 15 25 site number 4.1 4.2 Riffle/Pool Riffle Pool Description Width (M) 5.42 5.42 Depth Spacing (M) 1.36 1.36 depth1 (M) ...read more.

Conclusion

Overall I have found many more species in the pools than in the riffles. I am convinced this is because pools have more sediment to kick up, so therefore I am more likely to pick up species. I have only been able to collect up to 6 species at a time. I cannot have collected all species that were present in the river, so the BMWP score that I have collected cannot be true. This makes my results extremely unreliable. The conditions of the river are not true for other rivers; in that there seems to be little diversity present. Although I found this on my pilot experiment, it was impossible to select another river to study to compare my results to. Limitations of methods Due to the tentative nature of this small experiment, there are several large errors that could occur with methods used. For example: kick sampling, as a method is very inaccurate. It is very hard to replicate same results each time such as the same number of kicks, kicking up the same amount of sediment each time, kicking with the same strength each time, kicking all sediment into the sweep net etc. The method used to calculate the velocity is very inaccurate. The red dye travelling the river was only "judged" to have crossed the meter rule. It was also impossible to place the dye in the same part of the river, other methods such as dropping an orange in the river along a meter rule proved no more accurate. Matthew Stone Page 12 of 12 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Living Things in their Environment section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Living Things in their Environment essays

  1. Marked by a teacher

    Research question - Is using dogs for work ethical?

    5 star(s)

    4- 5- Do you think that people should condition dogs to do jobs in the workforce? 1. Yes 2.Yes-as long as respected 3.Yes- to help people 4.They get treated well and help police 5. Not sure because it is good for humans but can harm the Dog.

  2. Marked by a teacher

    An experiment to investigate the species diversity in non-trampled and trampled areas.

    4 star(s)

    There could be some plants that are irritating and so gloves should be worn whilst performing the investigation. I should try to avoid working in slippery areas. However, if forced to do so, I should take my time. The tape measure may move, resulting in the wrong area being investigated

  1. Marked by a teacher

    An Investigation into a Woodlice's Preferred Choice of Environment.

    3 star(s)

    the woodlice are in the dark/wet environment, thus supporting my hypothesis that woodlice prefer a more dark and damp environment. EVALUATION As you can see, I had to amend my experiment, as I had not taken everything into account. After setting up most of my apparatus and collecting in my

  2. What amounts of vitamin C are in different brands of orange juice.

    I think that Just Juice and Del Monte will have a large concentration of vitamin C followed by Sunpride, Tesco, Waitrose and the two brands of Libby's. Its interesting to note that the original Libby's has a lower concentration of vitamin C then the original Libby's and I believe this

  1. The comparison of bacterial content in a range of milks.

    the sugar lactose, which is the main source of nutrients etc for the bacteria present in milk to use to grow. The agar must be kept in a tightly closed jar, away from bright light. There are no problems with handling the agar.

  2. Branded Bleach is more effective at killing E. coli than Non branded bleach - ...

    Place a glass rod in a jar of methylated spirits, ensuring it stays on the rod; with no skin contact. Immerse the rod in the Bunsen for a flame to form so any possible any contaminates are killed. 9)

  1. What sorts of species become 'invasive aliens' in a world of climatic change?

    to whether a species will be able to outcompete natives or fill a vacant niche and subsequently become invasive (Myers & Bazeley, 2004). Common life history characteristics of successful invasive species include short generation times and juvenile periods, large numbers of offspring, and vegetative reproduction and readily dispersed propagules in plants (MacDonald, 2003).

  2. An Investigation of the Diversity and Abundance of Ground Flora in Coppices of Different ...

    I believe there is likely to be a greater abundance of each species there and perhaps more diversity too. However this is not the case with the old coppice. As there are big Oak trees, which act as a canopy, then the full amount of sunlight entering the coppice will

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work