• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Analysing Soft Drink

Extracts from this document...


Analysing Soft Drinks Introduction Soft drinks contain acid and sugar. These substances contribute to tooth decay and therefore are a cause for concern. In the first part of the investigation we'll measure the acidity in blackcurrant juice. Labels on black currant juice drinks usually state citric acid is present in the drink, but it doesn't give you the amount of how much it contains. Dilutable soft drinks contain between 0.15 - 2.5% of citric acid research by The British Drinks Association and therefore the second part of the experiment would be to determine the concentrations of blackcurrant juice in the diluted samples. Investigation 1: Measure the acidity of the blackcurrant juice drink In order to measure the acidity of the blackcurrant juice, I'll titrate black current juice with 0.1mol of sodium hydroxide and use a pH meter to measure its pH. Technique The technique of this experiment is titration. It is a method of chemical analysis, which is used to determine the volume of concentration needed to react with an unknown solution. Equipments needed for titration: * Burette * Conical Flask * Clamp Technique of using titration method: The measurement on the burette (cm3) tells you how much solution you have poured into the substance. ...read more.


Experiment Begin: 1. Measure out 25 ml of black current juice by using a pipette 2. Pour it into a 10 cm3 beaker 3. Fill 50 cm3 burette with sodium hydroxide (make sure the tap is tight before pouring anything into it and use a funnel to avoid spillage) 4. Add 1.0cm3 of sodium hydroxide into the solution and shake it 5. Measure the pH and take a reading 6. Continue procedure 4 & 5 7. Until the pH gradually changes slowly add 0.1cm3 8. Take a reading Equipments needed Equipment Usage Goggles To protect the eyes from sodium hydroxide Gloves To protect the hands from sodium hydroxide Beaker (100 cm3) Container Burette (50cm3) Control measure Pipette (25 cm3) Measure out 25 cm3 of black current juice Black current juice Fixed volume of water Funnel Prevent any spillages Clamp Hold the burette tight in place pH meter Measure the pH in black current juice Average Results Analysis 1dm3 = 1000cm3 NaOH Calculation 1. No. moles (Acid) = Concentration (NaOH) x Volume of titre required/ 1000 2. Concentration of acid = moles x 1000/ volume (dm-3) Concentration of NaOH to use: No mol NaOH = No. mol citric acid /3 = 0.001 Conc. NaOH= No. of mol Citric acid x 1000/Vol = 0.001 x 1000/10 =0.1 Formula: C6H8O7+3NaO4 --> C6H8O7Na3+3H2O 3:1 NaOH C6H8O7 Volume (cm3) ...read more.


21 27 27 35 42 47 55 71 82 100 Experiment 2 19 21 26 27 34 42 47 54 69 78 100 Experiment 3 20 22 26 26 36 41 48 58 72 83 100 Average 19 21.3 26.3 26.7 35 41.7 47.3 55.7 70.7 81 100 Concentration 1 2 3 Experiment 1 36% 32% 34% Experiment 2 36% 30% 30% Experiment 3 36% 33% 32% Average 36% 31.7% 32% Evaluation: Through out the experiment, I've completed most of the tasks. However, I think my experiment it's not as good as I expected to be. The results I've got for my first experiment have some slight anomalous values, which will impact on my final results. These are the possible reasons: 1. Volume control: extra solution (NaOH) can be accidentally added into the substance during the titration. A small amount of extra solution can have a big impact on the pH 2. Room temperature: Room temperature rise can speed up the collision between particles and therefore increase the chances of reactions between citric acid and sodium hydroxide 3. Time limit: If we have given more time to complete our experiments more repeated of experiments can be done. This will increase the accuracy for my final result and more chance of avoiding biases 4. Equipments: equipments can be improve therefore the results would be xmore accurate ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Comparing the concentration of Vitamin C in a fresh fruit versus its carton juice

    Using a syringe, 1cm� of DCPIP was taken up and put in a test tube. Another syringe was used to take up some of the Vitamin C solution. Vitamin C was added into the DCPIP drop by drop until the DCPIP turned colourless.

  2. To find the percentage composition of citric acid in lemon squash. I will do ...

    If the sample requires more than 40mL of NaOH to reach an endpoint, the sample is too concentrated and needs diluted. If this is the case, proceed to step 4, if not proceed to step 5. 4.) To dilute the sample, use the pipet to get 10.00mL of the juice and put it into the 100mL volumetric flask.

  1. The action of amylase and pectinase in varying amounts when clarifying cloudy apple juice.

    Graph 2 shows the results of experiment 3 plotted on it as well. Experiment 3 produced some anomalous results, which I shall analyse in my conclusion. The table below is a seummary table of experiments 1 and 2. I have not included experiment 3 in this table because of it's

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    present in 100 cm3 of spinach extract solution. To do this the moles present in 10 cm3 will have to be multiplied by 10. 0.000363833 mol dm-3 X 10 = 0.003161666 mol dm-3 Only 15 grams of Spinach Oleracea were used to make up the 100cm3 spinach extract solution, so in order to work out the moles of Iron (II)

  1. Identification of an organic unknown.

    measure out 5ml of the organic unknown in another 10ml measuring cylinder 5) pour the unknown from the measuring cylinder into the test tube 6) add about 5-10mm cubed of sodium with care using the forceps to the test tube and quickly stopper the tube with the bung 7)

  2. Find out the percentage of citric acid present in lemon squash by using a ...

    Beakers for collecting the hot water- 500ml X 2 6. Stopwatch- minutes & seconds 7. Person recording results- this person will have a different speed of recording and checking the time. 8. Same table of results- this is for repeats.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work