• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Analysing Soft Drink

Extracts from this document...

Introduction

Analysing Soft Drinks Introduction Soft drinks contain acid and sugar. These substances contribute to tooth decay and therefore are a cause for concern. In the first part of the investigation we'll measure the acidity in blackcurrant juice. Labels on black currant juice drinks usually state citric acid is present in the drink, but it doesn't give you the amount of how much it contains. Dilutable soft drinks contain between 0.15 - 2.5% of citric acid research by The British Drinks Association and therefore the second part of the experiment would be to determine the concentrations of blackcurrant juice in the diluted samples. Investigation 1: Measure the acidity of the blackcurrant juice drink In order to measure the acidity of the blackcurrant juice, I'll titrate black current juice with 0.1mol of sodium hydroxide and use a pH meter to measure its pH. Technique The technique of this experiment is titration. It is a method of chemical analysis, which is used to determine the volume of concentration needed to react with an unknown solution. Equipments needed for titration: * Burette * Conical Flask * Clamp Technique of using titration method: The measurement on the burette (cm3) tells you how much solution you have poured into the substance. ...read more.

Middle

Experiment Begin: 1. Measure out 25 ml of black current juice by using a pipette 2. Pour it into a 10 cm3 beaker 3. Fill 50 cm3 burette with sodium hydroxide (make sure the tap is tight before pouring anything into it and use a funnel to avoid spillage) 4. Add 1.0cm3 of sodium hydroxide into the solution and shake it 5. Measure the pH and take a reading 6. Continue procedure 4 & 5 7. Until the pH gradually changes slowly add 0.1cm3 8. Take a reading Equipments needed Equipment Usage Goggles To protect the eyes from sodium hydroxide Gloves To protect the hands from sodium hydroxide Beaker (100 cm3) Container Burette (50cm3) Control measure Pipette (25 cm3) Measure out 25 cm3 of black current juice Black current juice Fixed volume of water Funnel Prevent any spillages Clamp Hold the burette tight in place pH meter Measure the pH in black current juice Average Results Analysis 1dm3 = 1000cm3 NaOH Calculation 1. No. moles (Acid) = Concentration (NaOH) x Volume of titre required/ 1000 2. Concentration of acid = moles x 1000/ volume (dm-3) Concentration of NaOH to use: No mol NaOH = No. mol citric acid /3 = 0.001 Conc. NaOH= No. of mol Citric acid x 1000/Vol = 0.001 x 1000/10 =0.1 Formula: C6H8O7+3NaO4 --> C6H8O7Na3+3H2O 3:1 NaOH C6H8O7 Volume (cm3) ...read more.

Conclusion

21 27 27 35 42 47 55 71 82 100 Experiment 2 19 21 26 27 34 42 47 54 69 78 100 Experiment 3 20 22 26 26 36 41 48 58 72 83 100 Average 19 21.3 26.3 26.7 35 41.7 47.3 55.7 70.7 81 100 Concentration 1 2 3 Experiment 1 36% 32% 34% Experiment 2 36% 30% 30% Experiment 3 36% 33% 32% Average 36% 31.7% 32% Evaluation: Through out the experiment, I've completed most of the tasks. However, I think my experiment it's not as good as I expected to be. The results I've got for my first experiment have some slight anomalous values, which will impact on my final results. These are the possible reasons: 1. Volume control: extra solution (NaOH) can be accidentally added into the substance during the titration. A small amount of extra solution can have a big impact on the pH 2. Room temperature: Room temperature rise can speed up the collision between particles and therefore increase the chances of reactions between citric acid and sodium hydroxide 3. Time limit: If we have given more time to complete our experiments more repeated of experiments can be done. This will increase the accuracy for my final result and more chance of avoiding biases 4. Equipments: equipments can be improve therefore the results would be xmore accurate ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. How much Iron (II) in 100 grams of Spinach Oleracea?

    in this experiment caused the greatest precision error, and thus would have had the greatest impact on the accuracy. However this is still a very small precision error and thus would not have any dramatic effect on the experiment. It would make the solutions seem slightly more or less concentrated.

  2. The action of amylase and pectinase in varying amounts when clarifying cloudy apple juice.

    They might have been contaminated in someway or the colorimeter may not have be calibrated properly. To improve my experiment I could spend more time on the pilot experiments trying different apple juices. I could also try different temperatures. I could have tried using a stronger amylase solution such as

  1. To find the percentage composition of citric acid in lemon squash. I will do ...

    Record the amount of NaOH that was required to reach the endpoint for each trial. Perform at least four titrations for each juice. Special Note- The lemon juice and the lime juice were both too concentrated and took more than 40mL of NaOH to change color so a dilution of 10:1 had to be performed.

  2. Comparing the concentration of Vitamin C in a fresh fruit versus its carton juice

    if fresh orange juice was used, orange juice in a carton will be used. The same procedures apply to the carton juices as the fresh fruit juices. Results will be noted. Results will be tabulated in three different tables.

  1. Identification of an Organic Unknown.

    Use tripod and gauze for safety. Justification: If refluxing with an acid hydrolyses the ester then a carboxylic acid and alcohol is formed. Test for a carboxylic acid, if this is positive this confirms the presence of the ester. OR by heating the organic unknown we can distinguish whether it is an ester by its distinct fruity smell.

  2. Identification of an organic unknown.

    whereas other weaker acids (such as phenol) do not. My next test will therefore be to add sodium hydrogencarbonate to the organic unknown and test for carbon dioxide gas being given out. This will be done by bubbling the gas through limewater and seeing if a milky precipitate is formed.

  1. Find out the percentage of citric acid present in lemon squash by using a ...

    a heatproof mat there which would reduce the amount of unnecessary heat loss by a considerable amount Safety To make this investigation as safe as possible I will wear gloves to protect my self from getting cut if there is any breakages and if there is a spillage, to stop any hot water from dropping on myself and burning me.

  2. The aim on my investigation is to find the percentage of citric acid present ...

    Uses of sodium hydroxide Chemicals -29% Fibres -16% Alumina -1% Detergents -4% Paper -5% Neutralisation -5% Other uses -40% Sodium hydroxide is also called caustic soda because of its extremely corrosive nature Phenolphthalein Phenolphthalein is an indicator. It is colourless in acidic and neutral solutions and reddish pink in alkaline solutions.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work