• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Back Titration Lab Report. In my experiment, I hoped to find the amount of calcium carbonate in some mineral limestone using the back titration method

Extracts from this document...

Introduction

Back Titration Lab Report Aim: Determining the percentage purity of calcium carbonate in a sample of limestone. Introduction: In my experiment, I hoped to find the amount of calcium carbonate in some mineral limestone using the back titration method The equation of the reaction is as follows: 2HCl + CaCO3 � CaCl2 + CO2 + H2O As not all the acid will be used up in the above reaction, I plan to obtain the amount of acid not used up and consequently the amount of calcium carbonate in the limestone, by titrating it with known sodium hydroxide solution. The equation of the reaction is as follows: HCl + NaOH � NaCl + H2O Apparatus: The equipment and reagents that I used are as follows: 250 cm3 beaker Electronic balance (� 0.01 g) ...read more.

Middle

I repeated the procedure to obtain 3 sets of readings and will take the average value as my result. Data processing and presentation: With all the above processes being done, I wrote down the values which I obtained in the raw data table below. Raw data Raw Data Measure Volume of acid used / cm3 (� 0.05 cm3) 1 41.6 2 41.4 3 41.5 I then processed my data to find the average volume of acid used. Vavg = V1+V2+V3 3 Vavg = 41.6 + 41.4 + 3 Vavg = 41.5 (� 0.05 cm3) Now I used the various formulas related to the mole concept to find the amount of calcium carbonate in the sample of limestone. The equations of the reactions are as follows: 1) 2HCl + CaCO3 � CaCl2 + CO2 + H2O 2) ...read more.

Conclusion

1 2 = 4.075 x 10-3 moles Mass of CaCO3 in 1.5g of limestone = Moles x RMM (RMM of CaCO3 = 100) = 4.075 x 10-3 x 100 = 0.41g Percentage purity of calcium carbonate = 0.41 x 100 1.5 = 27.3 � 0.35 % Conclusion: A possible source of error in this experiment is the determination of the end-point, which is characterised by the solution just turning orange. This is because a slightly greater volume of acid may have been used than required to produce the pink colour. To try to reduce the effects of this error I would like to carry out a large number of titrations and their average used in the calculation. Another possible way to reduce error is by using more accurate measuring instruments like a more precise burette so as to reduce the uncertainty of the measurements. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

4 star(s)

This is a four star piece of work with excellent scientific knowledge of molar calculations and demonstrated great skill in their work. A clear, concise piece of work but they could have put more into the introduction and conclusion.

Marked by teacher Patricia McHugh 01/12/2012

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    To determine the amount of ammonia in a sample of household cleaning product, 'cloudy ...

    5 star(s)

    The dilution formula states that C1V1 = C2V2 or n1 = n2. ? n(NH3) in a 10.0ml sample = n(NH3) in a 250.0ml sample = 0.01153 moles 5. c(NH3) in cloudy ammonia = = 1.153M 6. c(NH3) in cloudy ammonia =1.153M ?

  2. Marked by a teacher

    ANALYSIS OF ASPIRIN BY BACK TITRATION

    4 star(s)

    Aspirin is a medicine commonly found in households around the world. It also is one of the least expensive and most useful drugs in the market. A Chemist named Felix Hoffmann first synthesized aspirin, otherwise known as acetylsalicylic acid, in 1897 from salicylic acid.

  1. Marked by a teacher

    Determine the solubility product of calcium hydroxide

    3 star(s)

    A decrease in the solubility of the salt (NaOH) solution is the effect of adding a common ion into the solution. The concentration will influence the reaction of equilibrium. 5) What effect, if any, does the Hydroxide ion concentration have on the solubility of calcium hydroxide in water?

  2. Titration Experiment

    Readings Results 1st reading 23.5 cm3 2nd reading 23.3 cm3 3rd reading 23.2 cm3 Average reading 23.3 cm3 Calculations Reading 1= 21.9 cm3 reading 2=22.1 cm3 reading=21.8cm3 Calculation of average titre: 21.9+22.1+21.8= 65.8 cm3 65.8 3 Volume of alkali used=25 cm3 Concentration of alkali used=0.1 mol Volume of acid used=

  1. Determine the percent aspirin in an aspirin tablet and to compare this with the ...

    A further 25 cm3 of distilled water was also added. The conical flask and its contents simmered gently over a Bunsen burner for 10 minutes. This was done to hydrolyse the acetyl salicylic acid. The solution was then allowed to cool then transferred quantitivly into a 250 cm3 volumetric flask.

  2. The aim of this experiment is to find the enthalpy change for the decomposition ...

    Also I used the thermometer as a stirrer. When the powder was added a lot of heat was lost to the surrounding when the exothermic reaction occurred, and heat could have also been taken in during the endothermic reaction. Improvements The improvements I could have made in this experiment are as follows: I could have used a mechanical

  1. In this investigation, I try to find out whether temperature is able to affect ...

    The heat of the water converted the heat energy into kinetic energy and makes the particles of the crystals vibrate more rapidly, so that it breaks down more easily and it collides with the particles of the crystals faster.

  2. Recrystallization - choose the most appropriate solvent to obtain a successful recrystallization of benzoic ...

    as follow:- Physical Characteristics of Solvents Solvent mp bp D420 nD20 e RD m Acetic acid 17 118 1.049 1.3716 6.15 12.9 1.68 Acetone -95 56 0.788 1.3587 20.7 16.2 2.85 Acetonitrile -44 82 0.782 1.3441 37.5 11.1 3.45 Anisole -3 154 0.994 1.5170 4.33 33 1.38 Benzene 5 80

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work