• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Back Titration Lab Report. In my experiment, I hoped to find the amount of calcium carbonate in some mineral limestone using the back titration method

Extracts from this document...

Introduction

Back Titration Lab Report Aim: Determining the percentage purity of calcium carbonate in a sample of limestone. Introduction: In my experiment, I hoped to find the amount of calcium carbonate in some mineral limestone using the back titration method The equation of the reaction is as follows: 2HCl + CaCO3 � CaCl2 + CO2 + H2O As not all the acid will be used up in the above reaction, I plan to obtain the amount of acid not used up and consequently the amount of calcium carbonate in the limestone, by titrating it with known sodium hydroxide solution. The equation of the reaction is as follows: HCl + NaOH � NaCl + H2O Apparatus: The equipment and reagents that I used are as follows: 250 cm3 beaker Electronic balance (� 0.01 g) ...read more.

Middle

I repeated the procedure to obtain 3 sets of readings and will take the average value as my result. Data processing and presentation: With all the above processes being done, I wrote down the values which I obtained in the raw data table below. Raw data Raw Data Measure Volume of acid used / cm3 (� 0.05 cm3) 1 41.6 2 41.4 3 41.5 I then processed my data to find the average volume of acid used. Vavg = V1+V2+V3 3 Vavg = 41.6 + 41.4 + 3 Vavg = 41.5 (� 0.05 cm3) Now I used the various formulas related to the mole concept to find the amount of calcium carbonate in the sample of limestone. The equations of the reactions are as follows: 1) 2HCl + CaCO3 � CaCl2 + CO2 + H2O 2) ...read more.

Conclusion

1 2 = 4.075 x 10-3 moles Mass of CaCO3 in 1.5g of limestone = Moles x RMM (RMM of CaCO3 = 100) = 4.075 x 10-3 x 100 = 0.41g Percentage purity of calcium carbonate = 0.41 x 100 1.5 = 27.3 � 0.35 % Conclusion: A possible source of error in this experiment is the determination of the end-point, which is characterised by the solution just turning orange. This is because a slightly greater volume of acid may have been used than required to produce the pink colour. To try to reduce the effects of this error I would like to carry out a large number of titrations and their average used in the calculation. Another possible way to reduce error is by using more accurate measuring instruments like a more precise burette so as to reduce the uncertainty of the measurements. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

4 star(s)

This is a four star piece of work with excellent scientific knowledge of molar calculations and demonstrated great skill in their work. A clear, concise piece of work but they could have put more into the introduction and conclusion.

Marked by teacher Patricia McHugh 01/12/2012

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Determine the solubility product of calcium hydroxide

    3 star(s)

    Compare the Ksp values obtained. What effect, if any, has the sodium hydroxide on the Ksp value on the Calcium Hydroxide? Ans: By comparing the Ksp values of solution II, III, IV, we can clearly see that the Ksp increases when the concentration of the NaOH decreases.

  2. Titration Experiment

    Readings Results 1st reading 23.5 cm3 2nd reading 23.3 cm3 3rd reading 23.2 cm3 Average reading 23.3 cm3 Calculations Reading 1= 21.9 cm3 reading 2=22.1 cm3 reading=21.8cm3 Calculation of average titre: 21.9+22.1+21.8= 65.8 cm3 65.8 3 Volume of alkali used=25 cm3 Concentration of alkali used=0.1 mol Volume of acid used=

  1. To investigate the rate of reaction between different concentrations of hydrochloric acid with metal ...

    At low pressures, the syringe tends to stick and not move. 5. The angle of the syringe is important as then in a horizontal angle, the gas will be pushing a less heavy syringe as it is a few degrees upright.

  2. A Colorimetric Determination of Manganese In Steel

    Calibration Graph. Concentration of Acidified Potassium Permanganate (mol/l) Absorbance 4.0x10-5 0.095 8.0x10-5 0.170 1.2x10-4 0.260 1.6x10-4 0.340 2.0x10-4 0.480 2.4x10-4 0.550 2.8x10-4 0.650 Unknown 1 0.260 Unknown 2 0.335 From the results it can be concluded that the concentration of the unknown 1 solution is 1.16mol/l and the concentration of the unknown 2 solution is 1.34mol/l.

  1. Indigestion Tablets Investigation

    This does not contain any carbon atoms so will not produce carbon dioxide when it reacts with the acid. 2. Each tablet will give off roughly the same amount of gas, whatever temperature of acid. This is because each tablet will have the same mass - refer to "Ensuring a fair test".

  2. To prepare antifebrin using phenylammonium chloride C6H5NH3CL and Ethanoic anhydride (CH3CO)2O.

    I believe the experimental procedure I followed was coherent and well organized and therefore allowed me to obtain accurate and reliable results, however there is always room for improvement. There were no anomalous results produced. To ensure reliability and accuracy of data, I could have used electronic equipment to accurately measure observations.

  1. To investigate the effect of concentration on the temperature rise, heat evolved and heat ...

    25 cm3 In my experiments I had used 25 cm3 of HCl acid expecting that the point of neutralization would occur at 25 cm3 of alkali, since one mole of H+ ions bond with one mole of OH- ions to form one mole of water molecules, moreover I expected this

  2. The aim of this experiment is to answer the following question: What is the ...

    This is so that the :) I will also use the same amount of concentrated sulphuric acid catalyst for each experiment. This amount will be four drops from a small pipette. This is so that the overall concentration of acid will be easier to work out if the drops are constant.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work