• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Calcium carbonate reacts with dilute hydrochloric acid according to the equation below

Extracts from this document...

Introduction

Calcium carbonate reacts with dilute hydrochloric acid according to the equation below. CaCO3(s) + 2HCl(aq) CaCl2(aq) + H2O (l) + CO 2(g) You are to confirm by experiment that this reaction is first order with respect to hydrochloric acid. Introduction The order of reaction gives the relationship between the rate of reaction, and the concentration of acid. In a first order reaction the rate is directly proportional to the concentration of the acid. Second order reactions are where the rate of reaction depends on the concentration squared. The aim of this experiment is to prove that the reaction that takes place is a first order reaction. Finding the rates for different concentrations, and plotting the results on a graph, rate against concentration, and drawing a line of best fit will be used to prove this. Prediction I predict that in the relationship between the reaction rate and the concentration, they will be directly proportional to each other. This means that it will be a first order reaction. I have predicted this because page 4 of 4B2.5 states that in a reaction where the rate is directly proportional to the concentration of acid, it is a first order reaction. Equipment 2 molar hydrochloric acid marble chips electric weighing scale 250ml conical flask 50ml measuring cylinder stop clock Method 1. Take the equipment and set it up, placing the conical flask on the scales 2. Press the tare button on the scales so that it shows that the weight is zero 3. Weigh out 10g of marble chips into the conical flask 4. Measure out 50cm3 of hydrochloric acid (this is 73.0g dm-3) 5. Pour the acid into the conical flask and note the weight 6. Start the timer as soon as possible 7. Record the weight every 15 seconds for two minutes 8. Repeat this experiment for every tenth percentage (43.8g dm-3 = 30 ml acid, 20ml water) ...read more.

Middle

Mass (g) Change in mass (g) Mass (g) Change in mass (g) Mass (g) Change in mass (g) 0 62.59 0.00 59.34 0.00 62.68 0.00 15 62.41 0.18 59.30 0.04 62.61 0.07 30 62.27 0.32 59.16 0.18 62.51 0.17 45 62.13 0.46 59.04 0.30 62.40 0.28 60 61.99 0.60 58.95 0.39 62.31 0.37 75 61.90 0.69 58.83 0.51 62.20 0.48 90 61.79 0.80 58.74 0.60 62.12 0.56 105 61.68 0.91 58.64 0.70 62.04 0.64 120 61.62 0.97 58.60 0.74 61.97 0.71 Concentration 51.1g dm-3 Mass of marble chips: 10.02g Mass of marble chips: 9.99g Mass of marble chips: 10.00g Time (seconds) Mass (g) Change in mass (g) Mass (g) Change in mass (g) Mass (g) Change in mass (g) 0 59.13 0.00 66.73 0.00 62.03 0.00 15 59.01 0.12 66.71 0.02 61.90 0.13 30 58.90 0.23 66.64 0.09 61.81 0.22 45 58.79 0.34 66.58 0.15 61.69 0.34 60 58.69 0.44 66.52 0.21 61.59 0.44 75 58.57 0.56 66.46 0.27 61.50 0.53 90 58.50 0.63 66.38 0.35 61.41 0.62 105 58.41 0.72 66.34 0.39 61.33 0.70 120 58.33 0.80 66.26 0.47 61.26 0.77 Concentration 43.8g dm-3 Mass of marble chips: 10.03g Mass of marble chips: 9.99g Mass of marble chips: 9.98g Time (seconds) Mass (g) Change in mass (g) Mass (g) Change in mass (g) Mass (g) Change in mass (g) 0 59.79 0.00 59.34 0.00 62.86 0.00 15 59.73 0.06 59.31 0.03 62.71 0.15 30 59.64 0.15 59.26 0.08 62.60 0.26 45 59.56 0.23 59.21 0.13 62.49 0.37 60 59.49 0.30 59.15 0.19 62.40 0.46 75 59.39 0.40 59.09 0.25 62.29 0.57 90 59.32 0.47 59.04 0.30 62.22 0.64 105 59.27 0.52 58.99 0.35 62.15 0.71 120 59.19 0.60 58.93 0.41 62.08 0.78 Concentration 36.5g dm-3 Mass of marble chips: 10.00g Mass of marble chips: 10.00g Mass of marble chips: 9.98g Time (seconds) Mass (g) Change in mass (g) Mass (g) Change in mass (g) ...read more.

Conclusion

This created anomalous results, which could be eliminated by redoing the experiment under more controlled conditions. The anomalous results may have occurred for many reasons, however, during this experiment the temperature conditions were a major issue. The experiment was conducted on several different days, when the temperatures varied greatly. One day the experiment was carried out whilst it was snowing. This caused a massive temperature drop, and also a change in the atmospheric pressure. When the temperature increased, the molecules would have moved around faster. This means that there would have been more collisions between the molecules, increasing the rate of reaction. However, when it got colder, it would have been the opposite. The molecules would have moved around slower, causing fewer collisions, therefore the rate of reaction would have been slower. The method I used meant that the size of the marble chips varied. Although I weighed about 10g of marble chips, it was often impossible to ensure they weighed exactly the same amount. By trying to make the weight of the marble chips 10g, I changed the size of the marble chips, using some big and some small. Using marble chips of different sizes meant that they did not have the same surface area. This will have affected the results I have collected, as there would have been different amounts of surface area upon which the molecules could collide. This is a limitation of the method, and therefore makes the reliability of my method questionable. If I were to conduct this experiment again, I would try to improve these aspects of the experiment, to eliminate anomalous results. I would aim to conduct the experiment under more controlled conditions. I would carry it out on the same day, to ensure that the temperature was as similar as possible for each of the experiments. Also, as well as weighing the marble chips, I would try to find a way to ensure that the surface area of the chips was similar. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Classifying Materials section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Classifying Materials essays

  1. Marked by a teacher

    rates of reaction- hydrochloric acid

    3 star(s)

    ( Test tube temperate needs to be kept the same because if the temperature increased, the reaction would be faster and would cause inaccurate results. Preliminary Work: I did a preliminary test where magnesium and hydrochloric acid were mixed together to cause a reaction.

  2. Peer reviewed

    Rate of reaction between Calcium Carbonate and Hydrochloric Acid

    4 star(s)

    * 1 x Stopwatch * 2 x 50ml Plastic Measuring Cylinders * 1 x Conical Flask * 1 x Rubber/ Plastic Tube * 1 x Rubber Bung * HCL of concentrations - .2 molar, .4 molar, .6 molar, .8molar, 1.0 Molar * Water * Marble Chips - 50g ( almost same size )

  1. Investigation into how mass affects the rate of fall.

    The Graph on these results in on graph paper. Evaluation From the results of the experiment, we can see that most of the averages are accurate because the difference between the lowest and highest result are not large and they are quite close together.

  2. The rates of reaction between CaCO3 and HCL

    This means the results will be more accurate. * The mass of reactions needs to be changed, 50ml of HCL and 10g of CaCO3 this left excess hydrochloric acid so the ratio was excessively unbalanced. Then in test to the amount of HCL was halved to 25ml and the amount

  1. The role of mass customization and postponement in global logistics

    The age of the consumer is in full swing. Shoppers have come to expect what they want, when they want it. And manufacturers and retailers are responding enthusiastically. This is the exciting, new, mega-trend methodology known as 'mass customisation' - the process of manufacturing and marketing a product based on individual preferences on a mass scale.

  2. Investigating the energy change when zinc reacts with copper(II) sulphate.

    Due to the small amount of zinc, there is less collision needed between the metal and CuSO4 in order to produce a zinc sulphate and copper. Zinc contains an unstable outer shell of electrons because it has the shell arrangement of 2.8.8.8.4.

  1. Rate of reaction of hydrochloric acid on magnesium.

    * The diameter and the length of the Mg must be the same because the more surface area of the Mg the longer the reaction will take to finish. So at all stages of the experiment the dimension of the Mg must be the same.

  2. Affect of concentration on reaction

    * Timer * 2 Molar Hydrochloric Acid * Calcium Carbonate (chips) Diagram Method 1. Measure 50cm3 of 2 molar HCl into a beaker. 2. Place beaker on scales then press 'tare' so reading returns to 0. 3. Take a few chips of CaCO3 with an approximate mass of 5g. 4.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work