• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Calculating the relative atomic mass of lithium.

Extracts from this document...

Introduction

Chemistry Assessed Practical Write-up Calculating the relative atomic mass of lithium 1) Mass of Lithium (g) Volume of Hydrogen collected (cm3) 1 1.2 129 2 1.1 120 3 1.3 137 Amount of H2 collected = 129 ml Mass of Lithium with oil = 1.2g 2Li + 2H20 --> 2LiOH + H2 Vol H2 = 129 24,000 = 0.005375 moles --> 1:2 --> 0.01075 RAM = Mass Moles RFM Lithium = 0.12 0.01075 RFM Lithium = 11.16g The RFM of Li that I worked out is = 11.16g RAM Li = 6.9g Therefore the mass of oil is: 11.16 - 6.9 = 4.26g 2) Volume Lithium Hydroxide = 25.00 cm3 exactly (using a volumetric pipette) Volume HCL (0.1 molar) to neutralize Lithium Hydroxide = See graph Start (cm3) Finish (cm3) Value (cm3) 1 0.0 27.1 27.1 2 1.2 28.2 27.0 3 0.7 27.8 27.1 LiOH + HCl --> LiCl + H2O Volume HCL = 27.1 Concentration of ...read more.

Middle

Using the volume of hydrogen I was able to calculate the moles of hydrogen. I used this work out the moles of Lithium from which I could work out the mass and RAM of Lithium. The second experiment was the titration of the lithium hydroxide that was a by-product of the first experiment. By measuring the amount of hydrochloric acid (of a known molarity) I was able to work out the RAM of Lithium. The average of the two RAM's that I found is: 10.835 + 11.16 = 10.99 2 Evaluation Both the results for the RAM that I recorded are around 11g, so any errors that have occurred have obviously affected all the results. Though the second result could be affected by more errors because it has the errors of the first results, and the risk of more errors in the second experiments. ...read more.

Conclusion

The error in the amount of HCl is about 0.1cm3 because the graduations on the pipette are 0.1cm3 apart. Taking into account all these errors the results that I obtained aren't very accurate, as the results show as they are about 4g off the proper RAM of Lithium. These results could be improved by using a 100cm3 volumetric pipette to measure the distilled water. This would make the error almost negligible. You could devise a system where the Lithium could be added when the bung was already in place, therefore there would be no gas escape. You could eliminate the error in HCl by using burette with smaller graduations. The overall percentage error is: 10.99 * 100 = 159 % 6.9 This experiment has basically gone smoothly, there were no major hiccups along the way, and although my results aren't entirely accurate, at least they are consistent. I conclude that the reason for this is that the apparatus that I used was not appropriately accurate for the experiment. 1 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Determine the relative atomic mass of lithium.

    1 x Beaker (250cm�) 1 x Lithium hydroxide 1 x Hydrochloric acid (0.1 mol dm�) 1 x Phenolphthalien 1 x Goggles 1 x Gloves 1 x Lab coat The apparatus should be set up as showed in the diagram above.

  2. Determination of the relative atomic mass of lithium.

    If the oil is not cleaned of the lithium will not produce as much hydrogen, also if there is oil left on the lithium when weighing it may affect the weight, making the experiment less accurate. It would improve the accuracy and reliability of my experiment to completely clean of

  1. Determination of the relative atomic mass of Lithium.

    Therefore its reaction with water does not occur to its fullest, which affects the accuracy and reliability of my results. Improvement - To prevent the lithium from reacting with anything else it can be stored in an inert atmosphere and also when using it, it can be handled in an inert box or area.

  2. Determination of the relative atomic mass of lithium.

    there was random errors which affected the experiment and therefore affected the results. Also the normal mass of lithium is 7 but the result that I concluded was slightly bigger. The main systematic errors were as follows: - 1) Large measuring cylinder had an error of +/- 2 cm3 2)

  1. Determination of the Relative Atomic Mass of Lithium

    cm3 of LiOH Amount of acid = Concentration of acid x Volume of acid Volume of acid = 27.0 x 10-3 dm3 Concentration of acid = 0.103 mol dm-3 Amount of acid = (27.0 x 10-3) x 0.103 = 2.8 x 10-3 mol mol of HCl = mol of LiOH

  2. To find the relative atomic mass of a sample of Lithium.

    with the surrounding water in the air and created a coating of Li oxide on the outside of the sample therefore again affecting the results.

  1. Determination of the relative atomic mass of lithium.

    The equation for this is concentration of lithium (0.10g) multiplied by volume of hydrochloric acid divided by 1000. Number of moles of HCl = concentration x volume/1000 0.10 x 39.27/1000 = 0.0393 The answer to this calculation is 0.00393 The ratio of this experiment is going to be: Ratio HCl

  2. Determination of the relative atomic mass of lithium.

    M = the mass of the material or substance. Mr = the relative molar mass. However in using this formula I found that it may not work properly. So I need to re - arrange the formula to get it to suite my needs because I am figuring out Mr (basically the atomic mass).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work