• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Calculating the relative atomic mass of lithium.

Extracts from this document...


Chemistry Assessed Practical Write-up Calculating the relative atomic mass of lithium 1) Mass of Lithium (g) Volume of Hydrogen collected (cm3) 1 1.2 129 2 1.1 120 3 1.3 137 Amount of H2 collected = 129 ml Mass of Lithium with oil = 1.2g 2Li + 2H20 --> 2LiOH + H2 Vol H2 = 129 24,000 = 0.005375 moles --> 1:2 --> 0.01075 RAM = Mass Moles RFM Lithium = 0.12 0.01075 RFM Lithium = 11.16g The RFM of Li that I worked out is = 11.16g RAM Li = 6.9g Therefore the mass of oil is: 11.16 - 6.9 = 4.26g 2) Volume Lithium Hydroxide = 25.00 cm3 exactly (using a volumetric pipette) Volume HCL (0.1 molar) to neutralize Lithium Hydroxide = See graph Start (cm3) Finish (cm3) Value (cm3) 1 0.0 27.1 27.1 2 1.2 28.2 27.0 3 0.7 27.8 27.1 LiOH + HCl --> LiCl + H2O Volume HCL = 27.1 Concentration of ...read more.


Using the volume of hydrogen I was able to calculate the moles of hydrogen. I used this work out the moles of Lithium from which I could work out the mass and RAM of Lithium. The second experiment was the titration of the lithium hydroxide that was a by-product of the first experiment. By measuring the amount of hydrochloric acid (of a known molarity) I was able to work out the RAM of Lithium. The average of the two RAM's that I found is: 10.835 + 11.16 = 10.99 2 Evaluation Both the results for the RAM that I recorded are around 11g, so any errors that have occurred have obviously affected all the results. Though the second result could be affected by more errors because it has the errors of the first results, and the risk of more errors in the second experiments. ...read more.


The error in the amount of HCl is about 0.1cm3 because the graduations on the pipette are 0.1cm3 apart. Taking into account all these errors the results that I obtained aren't very accurate, as the results show as they are about 4g off the proper RAM of Lithium. These results could be improved by using a 100cm3 volumetric pipette to measure the distilled water. This would make the error almost negligible. You could devise a system where the Lithium could be added when the bung was already in place, therefore there would be no gas escape. You could eliminate the error in HCl by using burette with smaller graduations. The overall percentage error is: 10.99 * 100 = 159 % 6.9 This experiment has basically gone smoothly, there were no major hiccups along the way, and although my results aren't entirely accurate, at least they are consistent. I conclude that the reason for this is that the apparatus that I used was not appropriately accurate for the experiment. 1 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Determination of the relative atomic mass of lithium.

    To ensure accuracy and reliability, measuring equipment should have the highest accuracy that is available and immense care must be taken when measuring. Another example of human error that may affect results is the decision of exactly when the end point of titration is and the reaction time between realising the end point and stopping the acid.

  2. Determination of the relative atomic mass of lithium.

    Now even if you shook the cylinder slightly it would not loose any water. However I am still not sure that I had a FULL cylinder of water. My theory is that when you placed it in the water indeed it was full, but when you placed the other end

  1. Determine the relative atomic mass of lithium.

    The v is the volume collected and the c is the concentration of the hydrogen. The n is unknown to us, the volume is the amount of hydrogen collected which is 150 cm� and it is widely accepted that 1 mole of any gas occupies 2400 cm� at room temperature.

  2. Determination of the relative atomic mass of lithium.

    0.10g / 0.0157064 = 6.37g mol-1 = 6.37g Evaluation The suitability of the weighting process of lithium was quite accurate as we were using scales to measure 0.10g of lithium. However, the collection of hydrogen wouldn't have been very accurate in the first procedure as a measuring cylinder and a bowl of water was used.

  1. To determine the relative atomic mass of Lithium

    When the colour changes from pink to colourless I took the burette's reading. I repeated the titration of only three times because the LiOH solution I made was only 100cm3, which is only for three titration. In order to be more accurate I took the reading of the burette to the nearest 0.05cm3.

  2. to determine the relative atomic mass of lithium. We will be doing this via ...

    This is calculated by the percentage error as below: Percentage error = Absolute error x 100 Value of quantity The main sources of error in procedure and in measurements are random errors and systematic errors. These are: * Random errors are associated with most measurements.

  1. Determination of the relative atomic mass of Lithium.

    + 2H2O (l) 2LiOH (aq) + H2 (g) 0.09g Step 1 : Moles of lithium, Li = mass = 0.09g = 0.0129 mol RAM 7 Step 2 : Mole ratio Li : H2 2 : 1 0.0129 mol: 6.45 x 10-3 mol (0.0129 divided by 2)

  2. To find the relative atomic mass of a sample of Lithium.

    By using a Burette and an Acid Base indicator, an exact amount of reactant 1 can be added to a known amount of reactant 2 until a colour change of the indicator indicates the solution has become neutral. Weight of Li=0.10grms Volume of H2 gas produced=203cm3 Analysis Part 2 Titer

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work