• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27
  28. 28
    28
  29. 29
    29
  30. 30
    30

Carbon track experiment

Extracts from this document...

Introduction

Luke Johnston

Physics Coursework - Carbon Track Experiment

Aim: To investigate if the resistance of a carbon track is proportional to its length and width.

Introduction: Carbon has interesting properties and this is why I am investigating it as it is a very important element in electronics. It is a semi-conductor, which is why carbon is very interesting, which means that it behaves like an insulator when cold, but when warm it becomes poor conductors. Carbon is a form of graphite, which I will be using to investigate. Graphite is unusual because it is a non-metal which conducts and is the only non-metal pure element that conducts electricity which makes it useful in electronic circuits.

Theory:

Resistance (considered in this experiment) is the slowing of a current through the carbon track. This means that the carbon track is a conductor. A conductor is an element which allows electricity or heat through their electrons. The more free electrons elements have, the more that element can conduct.

The electricity gives the free electrons a charge and so they begin to move randomly and crash into other free electrons. This happens all along the length of the conductor and so the electrons begin to move from the negative connection to the positive connection (this happens because electrons are negatively charged). Resistance is caused by these free charged electrons crashing into fixed particles (nuclei and protons), other free electrons and particles.

...read more.

Middle

Average (Ω)

1.0

3.43

3.32

2.94

3.23

3.0

6.93

7.07

7.11

7.04

5.0

10.93

12.96

10.70

11.53

7.0

12.78

17.18

17.82

15.93

9.0

15.44

20.30

21.45

19.06

11.0

18.53

24.49

22.64

21.89

13.0

22.11

26.96

26.01

25.03

15.0

27.22

29.05

29.67

28.65

17.0

30.90

32.43

33.46

32.26

19.0

34.84

37.19

34.90

35.64

21.0

37.33

39.56

38.77

38.55


image01.png


Width (cm)

Test 1 (Ω)

Test 2 (Ω)

Test 3 (Ω)

Average (Ω)

10.0

9.7

12.7

10.9

11.1

9.0

5.7

5.5

5.4

5.5

8.0

4.8

4.7

4.8

4.76

7.0

4.3

4.5

4.6

4.47

6.0

3.7

3.5

3.5

3.57

5.0

3.3

3.1

3.1

3.17

4.0

3.0

2.9

3.0

2.97

3.0

2.6

2.7

2.7

2.67

2.0

2.2

2.6

2.1

2.3

1.0

1.9

1.8

1.9

1.87


image05.png


Width (cm)

1/width (cm)

Resistance (Ω)

1.0

1.000

1.87

2.0

0.500

2.30

3.0

0.333

2.67

4.0

0.250

2.97

5.0

0.200

3.17

6.0

0.167

3.57

7.0

0.143

4.47

8.0

0.125

4.76

9.0

0.111

5.50

10.0

0.100

11.10

The reciprocal of width against resistance (1/width)


image06.png


Results 2

Length (cm)

Test 1 (Ω)

Test 2 (Ω)

Test 3 (Ω)

...read more.

Conclusion

Width

Once again, results 2 shows the most resistance due to the facts mentioned in the Length section. This is closely followed by results 1 which shows that there is not much difference in resistance in the widths of results 1 and 2 which may contradict my theory a bi, of the thickness of the carbon track affecting the resistance, but still shows that this does have an affect. In other words, the thickness of the carbon track does not have as much affect on the resistance in the width, whereas it does on the length. Again, the large copper has the lowest resistance.

Reciprocal

This basically shows the same theories as in the topic of Length just discussed above. The results 2 have the highest resistance, and then followed closely by results 1, and then the lowest, by far is the large copper.

My results show that the copper hoops were the right choice as they were easier to take readings down whereas the large copper was hard to take readings as they were so small.

Evaluation

There were anomalies in my results, mainly the large copper as it was all basically an anomalous result as it was very difficult to take the right readings. To overcome this I could have lowered the reading measurement

                                                                                                                            Page

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Find out how the length and width affect the resistance of a graphite track.

    It is also useful to know about the resistance of carbon to understand the principles of a potentiometer (a resistance producing piece of apparatus). In previous experiments I have looked at the electrical resistance of different types of metal including copper and constantine.

  2. How does length and width affect resistance

    Get a 1 meter ruler, and attach the chosen wire onto it. b) Secure it with cello-tape to ensure it stays straight and you have got the accurate length. c) Get a power pack and attach it to an ammeter with wires.

  1. Planning Experimental Procedures

    The more protons there are the greater the attraction, the greater the resistance. Below is a diagram showing that if the length of the wire is longer then it takes more time for the electricity to pass through it because it bumps into atoms in the wire through which they pass.

  2. An experiment to find how the resistance of a pencil lead varies which the ...

    M.D.F., which is particularly non-conductive and will stop the lead being damaged during the process of the experiment, or coming into contact with something conductive, and thus altering the results. I will plug a lead into the + end of the battery pack, and then fasten a crocodile clip to the other end of the wire.

  1. Design an experiment to predict and test the output from a simple AC generator.

    The coil will be arranged in a square on the end of the generator on either side as shown below The width of the coil can be found by the diameter of the wire as given in the griffin electrical accessories catalogue.

  2. An Investigation into how the resistance of a piece of graphite paper is affected ...

    To prove my find I did the same experiment for 28cm and for both the preliminary experiment and the repeat the reading on the ammeter came out to be higher than 1mA (near to full-scale deflection). Hence I can't use it as my length and so I will use 29cm.

  1. Test the resistance of carbon by changing the length of the line of carbon ...

    the more resistance there will be because of the increase in the electron collisions. The number of collisions, resistance or electron scattering should be proportional to the length of the material. In the experiment I will expect for the resistance to be proportional to the length of the carbon track.

  2. Construct and test an anemometer.

    The anemometer will rotate at a fast rate, and would cause damage if it hit the user's eye, especially as the cups are pointed. As the calibration is to be conducted in the dark room, and the length of the arm that the cups are mounted on may be underestimated, the user must take precaution.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work