• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# Carry out an experiment of simple harmonic motion using a simple pendulum and determine the acceleration due to gravity.

Extracts from this document...

Introduction

SIMPLE HARMONIC MOTION AND THE SIMPLE PENDULUM

Aim

To carry out an experiment of simple harmonic motion using a simple pendulum and determine the acceleration due to gravity.

Method

The apparatus is set up as above, the string must be measured accordingly with a ruler carefully to minimize any error.  The pendulum must be in equilibrium position which is central, where the pendulum does not move, as this gives more accuracy in timing the time period which is the time it takes for one complete oscillation.

The pendulum is put into movement by a gentle push, keeping the amplitude small, and the stopwatch is started.

Some practice counting and timing the oscillations may be needed to prepare for the experiment.

20 oscillations are counted and timing is stopped, it is then repeated to give an average time for the 20 oscillations and greater accuracy in the results.

The experiment is repeated 7 more times, with the length of string being increased by 0.1m.

Middle

1.10

0.55

0.4

25.1

25.31

25.21

1.26

0.63

0.5

27.94

28.00

27.97

1.40

0.71

0.6

30.44

30.47

30.455

1.52

0.77

0.7

32.44

32.56

32.5

1.63

0.84

0.8

34.91

34.88

34.895

1.74

0.90

## The graph is time against length, so using the equation T = 2L/g

The gradient of the graph can be calculated from   ΔΥ    and is equal to  2ΔΧg

ΔΥ  = 1.18    = 1.98

ΔΧ     0.595

1.98 = 2  = 6.2

g      g

g =  6.2   = 3.13

1.98

g = 3.13²

= 9.8ms²

### Conclusion

The value I obtained for the acceleration of the simple pendulum due to gravity is 9.8ms², which is good.  This shows that the experiment was accurate

Conclusion

My graph has a straight line through the origin that does seem to be showing a pattern between the length and time.  As expected the time period increases as length of the pendulum is increased.  All my results are either very close or on the line of best fit showing that there were no serious errors in the experiment.

Pendulums provide good time keeping because they perform simple harmonic motion and therefore can always have the same time period irrelevant of their mass.

Grandfather clocks have a time period of 2 seconds.

The length of the pendulum needed can be obtained from the following equation

## T = 2L/m

2 = 2L/9.81

2  = L/9.81

2

(0.32)² = L/9.81

1. = L/9.81
1. x 9.81 = L

L = 0.981 m

To calculate the maximum amplitude of the oscillations if the mass is not to lose contact with the tray, first the time period must be worked out, by using the following equation.

T = 2m/k

T = 21.3/15Nm¹

T = 20.086

T = 20.3

T = 1.9s

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Forces and Motion essays

1. ## The Simple Pendulum Experiment

4 star(s)

To do this experiment, I have 2 choices, the first of which is to see how long it takes me to start ad stop the digital chronometer. However, doing this beings into account all other sorts of possible errors, therefore I have chosen the second option, which is to use a piece of equipment known as a reaction time ruler.

2. ## Determination of the acceleration due to gravity using a simple pendulum.

100% of gravitational potential energy is converted to kinetic energy, and vice versa. * Gravitational field: This is constant and is being measured in this experiment. The value obtained during the experiment should be 9.81ms-2 to 3 significant figures. Sources of Error * Length of the string: This was measured using a metre ruler.

1. ## Period of Oscillation of a Simple Pendulum

By totalling together the differences between the theoretical answer and my answer, I can see how incorrect the results are as an average. On average, the results are out by -0.0675 seconds. This is only a small amount of time, however, if I had my answers exactly the same as the theoretical answers, then the total would equal zero.

2. ## Determining the acceleration due to gravity by using simple pendulum.

Simple harmonic motion states that the restoring force is proportional to the displacement. In more simple terms this means the further the bob from the rest position, the more it wanving forces theory. A SIMPLE PENDULUM AIM The aim for this experiment is to determine the acceleration due to gravity using a pendulum bob.

1. ## Bouncing Ball Experiment

period in which the experiment was conducted, and although the room's temperature may have increased by a degree or two, due to body heat, over the course of the period temperature was not a major factor that affected the height to which the ball bounced and would not have significantly affected the results.

2. ## In this experiment I aim to find out how the force and mass affect ...

No grease should be added to lubricate any equipment. � Air resistance - there is very little we can do to control this factor, and its effects would be so insignificant it may not matter. Basically, we just need to make sure we have the same trolley and we'll have to mind we don't accidentally attach a parachute to its back end.

1. ## Measuring Acceleration due to Gravity using a simple Pendulum.

In the preliminary experiment a range from 0.2m to 2.4m was used. This gave a better understanding of what measurements to use in the final experiment. Length (m) Time for 20 Oscillations (s) Period (s) 2.400 63.21 3.16 2.200 62.39 3.12 2.000 59.78 2.99 1.800 57.10 2.86 1.600 56.72 2.84

2. ## Investigating the period of a simple pendulum and measuring acceleration due to gravity.

THE APPARATUS: * String. * Bob. * Stop clock. * Wooden blocks. * Clamp stand. * Meter ruler. To ensure more accurate reading for length and time, I use: * A meter ruler with minimum reading of 1mm (resolution = 1mm). * A stop clock of minimum reading 0.01 seconds (resolution = 0.01sec).

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to