• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

Choosing Wires to do Different Jobs in Electrical Engineering.

Extracts from this document...


Matthew Lawson 10 Bede

SC1 Investigation: Choosing Wires to do Different Jobs in Electrical Engineering.

Problem- I am going to try and find out how the resistance of the wire is affected as the length of the wire changes.

Variables- In this experiment I will be changing the length of the wire; this will be changed for each test that I make. I will use the same material for the wire, keep it the same thickness and at the same temperature as these may also effect the resistance of the wire if they are changed.

Prediction- I predict that as the length of the wire increases the resistance of the wire will also increase because the free electrons will have further to travel and will collide with more atoms and other free electrons in the wire. I also predict that input variable will be proportional to the output so if the input is doubled the output should also be doubled.




I will first set up a circuit like the one shown above including the Ampmeter and Voltmeter. I will choose one type of wire, which will always be of the same material and diameter, to act as a resister in the circuit. I will measure

...read more.


providing that the temperature also remains constant. Furthermore, the resistance of a metal increases as its temperature increases. This is because at higher temperatures, the particles of the conductor are moving around more quickly, thus increasing the likelihood of collisions with the free electrons.



  • Length of wire. *
  • Material of wire.
  • Width of wire.
  • Starting temperature of wire.


and thus the resistance of the wire. †

  • Voltage across wire.
  • Current in circuit.
  • Temperature of wire.

The variable marked with a * will be varied, the other input variables will be kept constant. The output variable marked with a † will be measured.


  • The longer the wire, the higher the resistance. This is because the longer the wire, the more times the free electrons will collide with other free electrons, the particles making up the metal, and any impurities in the metal. Therefore, more energy is going to be lost in these collisions (as heat).
  • Furthermore, doubling the length of the wire will result in double the resistance. This is because by doubling the length of the wire one is also doubling the collisions that will occur, thus doubling the amount of energy lost in these collisions.


The following circuit was constructed to perform the investigation:


The two dots (  ) represent the crocodile clips that were placed at the ends of the required length of wire.


...read more.


For a particular result, one or more of the connections could have been faulty, causing extra resistance at the connections. A solution to this would be to, before each experiment, connect the connections together without the wire in place and measure the resistance then. If it is higher than it should be then the connections could be cleaned. Whilst extremely unlikely, it is conceivable that the power supply was providing a different voltage for some of the results. This is unlikely to be a problem in this investigation but it might have been an issue had we used batteries instead.

NB:      If one were to assume that Ohm’s Law applies, then another possible explanation could be that at some points (more likely in the lower lengths), the wire was not allowed to cool completely so that the temperature was higher for that measurement. Whilst unlikely (due to the two sets of results), this would cause a higher resistance as explained previously. However, it is now known, after researching the metal alloy “constantan,” that the resistivity (the electrical resistance of a conductor of particular area and length) of this alloy is not affected by temperature. Therefore, in these experiments Ohm’s Law does not apply.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Peer reviewed

    Investigation in resistance in wires

    5 star(s)

    I was unable to do repeats as I did not have enough time, this makes the test unreliable. But even though there were no repeats on all three tests from 1V to 8V there is a straight line just as I predicted.

  2. Investigate the resistance of different wires and how at different lengths the voltage increases ...

    Higher orbitals have very unusual shapes. 2px3px Metals conduct electricity because the atoms in them do not hold on to their electrons very well, and so creating free electrons, carrying a negative charge to jump along the line of atoms in a wire.

  1. Free essay

    How the length of constantan wire affects the ressistance in a electrical circuit

    Voltmeter (v) volts Current (I) amps Resistance ? Ohms 10 2.72 3.67 0.74 20 2.85 2.53 1.12 30 3.27 1.92 1.7 40 3.51 1.49 2.35 50 3.59 1.24 2.89 60 3.64 1.04 3.4 70 3.67 0.93 3.94 80 5.77 0.83 4.54 90 5.83 0.75 5.1 100 5.89 0.66 5.89 Average result - Average Length (cm)

  2. Investigate how the length of a wire affects the wires resistance.

    0.25 8.96 8.93 80 High 1.40 0.18 7.78 80 Medium 1.79 0.22 8.14 80 Low 2.04 0.25 8.16 8.03 70 High 1.17 0.17 6.88 70 Medium 1.45 0.21 6.90 70 Low 1.83 0.26 7.04 6.94 60 High 1.03 0.17 6.06 60 Medium 1.33 0.22 6.05 60 Low 1.75 0.29 6.03

  1. Resistance of a Wire Investigation

    Use the diameters 0.71mm, 0.56mm, 0.28 mm, and 0.20mm. Although the diameters haven't the same interval between them, once we have worked out the resistance, we can draw a graph to discover any relationship between the thickness and the resistance of wire.

  2. Resistance and Wires

    This is because there was only a short amount of nichrome wire that was being used to conduct the voltage. This caused over heating due to the resistance. As heat increased, the rate that the wire was heating up increased because the extra heat was causing more resistance, causing more heat do be developed at a faster rate.

  1. An in Investigation into the Resistance of a Wire.

    Because the normal ammeters and volt meters only give the reading to two decimal places whereas the multi meters can give up to three decimal places which means its more accurate than the normal meters. Results For the wire Eureka 28 Length/cm Voltage/volts (V)

  2. To investigate how the length (mm) and the cross-sectional (mm2) area of a wire ...

    Therefore the resistance is greater. If you double the density, you double the number of atoms per unit volume, and therefore you double the number of collisions between atoms and electrons. The wire with twice the original density will therefore have twice the original resistance.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work